共 50 条
Large-scale experimental study on marine hydrate-based CO2 sequestration
被引:0
|作者:
Ge, Yang
[1
]
Wang, Lei
[2
,3
]
Song, Yongchen
[1
]
机构:
[1] Dalian Univ Technol, Key Lab Ocean Energy Utilizat & Energy Conservat, Minist Educ, Dalian 116024, Peoples R China
[2] Yanshan Univ, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Peoples R China
[3] Yanshan Univ, Hebei Key Lab Green Construct & Intelligent Mainte, Qinhuangdao 066004, Peoples R China
来源:
关键词:
Deep sea;
CO;
2;
sequestration;
Hydrate;
Large-scale simulation system;
GAS-HYDRATE;
POROUS-MEDIA;
INJECTION;
DISPOSAL;
STORAGE;
SIZE;
D O I:
10.1016/j.energy.2024.133649
中图分类号:
O414.1 [热力学];
学科分类号:
摘要:
In recent years, the global climate issues caused by CO2 have become increasingly severe, triggering a series of technological reforms aimed at decarbonization. Among these, the marine hydrate-based CO2 sequestration (HBCS) technology has shown great potential. However, the current research on HBCS mainly relies on smallscale experimental studies, and the corresponding conclusions lack practical applications. Therefore, this paper independently developed a large-scale HBCS experimental system with a 1700 L high-pressure reactor, which has a total of 80 temperature measurement points and 80 pressure measurement points, as well as 9 horizontal wells and 9 vertical wells. This paper utilizes this system to conduct HBCS research on water-saturated and coarse-grained quartz sand at 11 MPa pore pressure through vertical and horizontal wells. The experimental results indicate that under conditions of low temperature (7 oC), high flow rate (20 mL/min), and horizontal well, the water to CO2 hydrate conversion (39.83 %), total amount of CO2 sequestration (14296.64 L/STP) and HBCS (12790.48 L/STP) are the highest, corresponding to the minimum reservoir space for sequestering one million tons of CO2. Furthermore, the influence area for HBCS in vertical well is approximately 9000 times the cross-sectional area of the well. This research can provide theoretical references for marine HBCS.
引用
收藏
页数:18
相关论文