Large-scale experimental study on marine hydrate-based CO2 sequestration

被引:0
|
作者
Ge, Yang [1 ]
Wang, Lei [2 ,3 ]
Song, Yongchen [1 ]
机构
[1] Dalian Univ Technol, Key Lab Ocean Energy Utilizat & Energy Conservat, Minist Educ, Dalian 116024, Peoples R China
[2] Yanshan Univ, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Peoples R China
[3] Yanshan Univ, Hebei Key Lab Green Construct & Intelligent Mainte, Qinhuangdao 066004, Peoples R China
关键词
Deep sea; CO; 2; sequestration; Hydrate; Large-scale simulation system; GAS-HYDRATE; POROUS-MEDIA; INJECTION; DISPOSAL; STORAGE; SIZE;
D O I
10.1016/j.energy.2024.133649
中图分类号
O414.1 [热力学];
学科分类号
摘要
In recent years, the global climate issues caused by CO2 have become increasingly severe, triggering a series of technological reforms aimed at decarbonization. Among these, the marine hydrate-based CO2 sequestration (HBCS) technology has shown great potential. However, the current research on HBCS mainly relies on smallscale experimental studies, and the corresponding conclusions lack practical applications. Therefore, this paper independently developed a large-scale HBCS experimental system with a 1700 L high-pressure reactor, which has a total of 80 temperature measurement points and 80 pressure measurement points, as well as 9 horizontal wells and 9 vertical wells. This paper utilizes this system to conduct HBCS research on water-saturated and coarse-grained quartz sand at 11 MPa pore pressure through vertical and horizontal wells. The experimental results indicate that under conditions of low temperature (7 oC), high flow rate (20 mL/min), and horizontal well, the water to CO2 hydrate conversion (39.83 %), total amount of CO2 sequestration (14296.64 L/STP) and HBCS (12790.48 L/STP) are the highest, corresponding to the minimum reservoir space for sequestering one million tons of CO2. Furthermore, the influence area for HBCS in vertical well is approximately 9000 times the cross-sectional area of the well. This research can provide theoretical references for marine HBCS.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Large-Scale Experimental Investigation of Hydrate-Based Carbon Dioxide Sequestration
    Pang, Weixin
    Ge, Yang
    Chen, Mingqiang
    Zhang, Xiaohan
    Wen, Huiyun
    Fu, Qiang
    Lei, Xin
    Li, Qingping
    Zhou, Shouwei
    ENERGIES, 2024, 17 (13)
  • [2] A Comparative Study of Hydrate-Based CO2 Sequestration at Different Scales
    Pang, Weixin
    Chen, Mingqiang
    Fu, Qiang
    Ge, Yang
    Zhang, Xiaohan
    Wen, Huiyun
    Zhou, Shouwei
    Li, Qingping
    ENERGY & FUELS, 2024, 38 (17) : 16599 - 16609
  • [3] Roles of montmorillonite clay on the kinetics and morphology of CO2 hydrate in hydrate-based CO2 sequestration
    Ren, Junjie
    Zeng, Siyu
    Chen, Daoyi
    Yang, Mingjun
    Linga, Praveen
    Yin, Zhenyuan
    APPLIED ENERGY, 2023, 340
  • [4] A Perspective on the Effect of Physicochemical Parameters, Macroscopic Environment, Additives, and Economics to Harness the Large-Scale Hydrate-Based CO2 Sequestration Potential in Oceans
    Kumar, Yogendra
    Sangwai, Jitendra S.
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (30) : 10950 - 10979
  • [5] Evaluation of stratigraphic adaptability for hydrate-based CO2 sequestration in marine clay-containing reservoirs
    Wang, Tian
    Fan, Ziyu
    Sun, Lingjie
    Yang, Lei
    Zhao, Jiafei
    Zhang, Lunxiang
    Song, Yongchen
    CHEMICAL ENGINEERING JOURNAL, 2024, 501
  • [6] Experimental study on the flux-controlled growth of CO2-SO2 hydrates: Implications for hydrate-based CO2 sequestration
    Zhang, Lifu
    Zhou, Qian
    Wang, Zhe
    Lu, Wanjun
    CHEMICAL ENGINEERING SCIENCE, 2024, 298
  • [7] Experimental study on hydrate-based CO2 removal from CH4/CO2 mixture
    Wang, Fei
    Fu, Shanfei
    Guo, Gang
    Jia, Zhen-Zhen
    Luo, Sheng-Jun
    Guo, Rong-Bo
    ENERGY, 2016, 104 : 76 - 84
  • [8] Research Advances, Maturation, and Challenges of Hydrate-Based CO2 Sequestration in Porous Media
    Rehman, Amirun Nissa
    Bavoh, Cornelius B.
    Pendyala, Rajashekhar
    Lal, Bhajan
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (45) : 15075 - 15108
  • [9] Hydrate-based CO2 sequestration technology: Feasibilities, mechanisms, influencing factors, and applications
    Cao, Xuewen
    Wang, Hongchao
    Yang, Kairan
    Wu, Shichuan
    Chen, Qian
    Bian, Jiang
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 219
  • [10] Evaluation of 1,3-dioxolane in promoting CO2 hydrate kinetics and its significance in hydrate-based CO2 sequestration
    Yao, Yuanxin
    Yin, Zhenyuan
    Niu, Mengya
    Liu, Xuejian
    Zhang, Jibao
    Chen, Daoyi
    CHEMICAL ENGINEERING JOURNAL, 2023, 451