Topological quantum compilation of two-qubit gates

被引:0
作者
Burke, Phillip C. [1 ,2 ,3 ]
Aravanis, Christos [4 ,5 ]
Aspman, Johannes [5 ]
Marecek, Jakub [5 ]
Vala, Jiri
机构
[1] Univ Coll Dublin, Sch Phys, Dublin, Ireland
[2] Univ Coll Dublin, Ctr Quantum Engn Sci & Technol, Dublin, Ireland
[3] Maynooth Univ, Dept Psychol, Maynooth W23 F2H6, Kildare, Ireland
[4] Univ Sheffield, Int Coll, Sheffield S1 4DE, England
[5] Czech Tech Univ, Dept Comp Sci & Engn, Prague 13121, Czech Republic
基金
爱尔兰科学基金会;
关键词
COMPUTATION; UNIVERSAL; ANYONS;
D O I
10.1103/PhysRevA.110.052616
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate the topological quantum compilation of two-qubit operations within a system of Fibonacci anyons. Our primary goal is to generate gates that are approximately leakage-free and equivalent to the controlled-NOT (CNOT) gate up to single-qubit operations. These gates belong to the local equivalence class [CNOT]. Additionally, we explore which local equivalence classes of two-qubit operations can be naturally generated by braiding Fibonacci anyons. We discovered that most of the generated classes are located near the edges of the Weyl chamber representation of two-qubit gates, specifically between the local equivalence classes of the identity [1] and [CNOT], SWAP and between those of the double-controlled-NOT [DCNOT] and [SWAP]. Furthermore, we found a numerically exact implementation of a local equivalent of the SWAP gate using a sequence of only nine elements from the Fibonacci braiding gate set.
引用
收藏
页数:12
相关论文
共 32 条
  • [1] FAULT-TOLERANT QUANTUM COMPUTATION WITH CONSTANT ERROR RATE
    Aharonov, Dorit
    Ben-Or, Michael
    [J]. SIAM JOURNAL ON COMPUTING, 2008, 38 (04) : 1207 - 1282
  • [2] Topological qubit design and leakage
    Ainsworth, R.
    Slingerland, J. K.
    [J]. NEW JOURNAL OF PHYSICS, 2011, 13
  • [3] Braid topologies for quantum computation
    Bonesteel, NE
    Hormozi, L
    Zikos, G
    Simon, SH
    [J]. PHYSICAL REVIEW LETTERS, 2005, 95 (14)
  • [4] Topological Quantum Hashing with the Icosahedral Group
    Burrello, Michele
    Xu, Haitan
    Mussardo, Giuseppe
    Wan, Xin
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (16)
  • [5] Systematically generated two-qubit anyon braids
    Carnahan, Caitlin
    Zeuch, Daniel
    Bonesteel, N. E.
    [J]. PHYSICAL REVIEW A, 2016, 93 (05)
  • [6] The search for leakage-free entangling Fibonacci braiding gates
    Cui, Shawn X.
    Tian, Kevin T.
    Vasquez, Jennifer F.
    Wang, Zhenghan
    Wong, Helen M.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (45)
  • [7] Universal quantum computation with the exchange interaction
    DiVincenzo, DP
    Bacon, D
    Kempe, J
    Burkard, G
    Whaley, KB
    [J]. NATURE, 2000, 408 (6810) : 339 - 342
  • [8] Freedman MH, 2003, B AM MATH SOC, V40, P31
  • [9] A modular functor which is universal for quantum computation
    Freedman, MH
    Larsen, M
    Wang, ZH
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 227 (03) : 605 - 622
  • [10] Optimizing for an arbitrary perfect entangler. II. Application
    Goerz, Michael H.
    Gualdi, Giulia
    Reich, Daniel M.
    Koch, Christiane P.
    Motzoi, Felix
    Whaley, K. Birgitta
    Vala, Jiri
    Mueller, Matthias M.
    Montangero, Simone
    Calarco, Tommaso
    [J]. PHYSICAL REVIEW A, 2015, 91 (06):