Nonmonotonic Hall Effect of Weyl Semimetals under a Magnetic Field

被引:1
作者
Zhang, Xiao-Xiao [1 ,2 ]
Nagaosa, Naoto [3 ,4 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan Natl High Magnet Field Ctr, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Peoples R China
[3] RIKEN, Ctr Emergent Matter Sci CEMS, Wako, Saitama 3510198, Japan
[4] RIKEN, Fundamental Quantum Sci Program, TRIP Headquarters, Wako, Saitama 3510198, Japan
关键词
ANTIFERROMAGNET; EMERGENCE; CO3SN2S2; PHASE;
D O I
10.1103/PhysRevLett.133.166301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Hall effect of topological quantum materials often reveals essential new physics and possesses potential for application. The magnetic Weyl semimetal is one especially interesting example that hosts an interplay between the spontaneous time-reversal symmetry-breaking topology and the external magnetic field. However, it is less known beyond the anomalous Hall effect thereof, which is unable to account for plenty of magnetotransport measurements. We propose a new Hall effect characteristically nonmonotonic with respect to the external field, intrinsic to the three-dimensional Weyl topology, and free from chemical potential fine-tuning. Two related mechanisms from the Landau level bending and chiral Landau level shifting are found, together with their relation to the Shubnikov-de Hass effect. This field-dependent Hall response, universal to thin films and bulk samples, provides a concrete physical picture for existing measurements and is promising to guide future experiments.
引用
收藏
页数:6
相关论文
共 50 条
[1]  
[Anonymous], 2016, Phys. Rev. Lett
[2]   Weyl and Dirac semimetals in three-dimensional solids [J].
Armitage, N. P. ;
Mele, E. J. ;
Vishwanath, Ashvin .
REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
[3]   Time-reversal symmetry breaking type-II Weyl state in YbMnBi2 [J].
Borisenko, Sergey ;
Evtushinsky, Daniil ;
Gibson, Quinn ;
Yaresko, Alexander ;
Koepernik, Klaus ;
Kirnp, Timur ;
Ali, Mazhar ;
van den Brink, Jeroen ;
Hoesch, Moritz ;
Fedorov, Alexander ;
Haubold, Erik ;
KushnirenkoHD, Yevhen ;
Soldatov, Ivan ;
Schaefer, Rudolf ;
Cava, Robert J. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[4]   Prediction of a Weyl semimetal in Hg1-x-yCdxMnyTe [J].
Bulmash, Daniel ;
Liu, Chao-Xing ;
Qi, Xiao-Liang .
PHYSICAL REVIEW B, 2014, 89 (08)
[5]   Weyl Metals [J].
Burkov, A. A. .
ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 9, 2018, 9 :359-378
[6]   Weyl Semimetal in a Topological Insulator Multilayer [J].
Burkov, A. A. ;
Balents, Leon .
PHYSICAL REVIEW LETTERS, 2011, 107 (12)
[7]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[8]   Two Phase Transitions Induced by a Magnetic Field in Graphite [J].
Fauque, Benoit ;
LeBoeuf, David ;
Vignolle, Baptiste ;
Nardone, Marc ;
Proust, Cyril ;
Behnia, Kamran .
PHYSICAL REVIEW LETTERS, 2013, 110 (26)
[9]  
Hirschberger M, 2016, NAT MATER, V15, P1161, DOI [10.1038/NMAT4684, 10.1038/nmat4684]
[10]   Critical thickness for the emergence of Weyl features in Co3Sn2S2 thin films [J].
Ikeda, Junya ;
Fujiwara, Kohei ;
Shiogai, Junichi ;
Seki, Takeshi ;
Nomura, Kentaro ;
Takanashi, Koki ;
Tsukazaki, Atsushi .
COMMUNICATIONS MATERIALS, 2021, 2 (01)