Advances in Modeling and Control of Linear Parameter Varying Systems

被引:0
|
作者
Wang D.-F. [1 ,2 ]
Zhu W.-Q. [1 ]
机构
[1] Department of Automation, North China Electric Power University, Baoding
[2] Hebei Engineering Research Center of Simulation & Optimized Power Generation, North China Electric Power University, Baoding
来源
Zidonghua Xuebao/Acta Automatica Sinica | 2021年 / 47卷 / 04期
基金
中国国家自然科学基金;
关键词
Linear parameter varying (LPV) system; Model identification; Predictive control; Robust control; System modeling; Varying gain control;
D O I
10.16383/j.aas.c180718
中图分类号
学科分类号
摘要
Linear parameter varying (LPV) model has great advantages in describing the nonlinear and time-varying characteristics of practical systems. The LPV model can be used to solve the control problems of nonlinear systems by using some mature linear system control theories. In this paper, the research results of LPV system in recent years, such as model structure and modeling method, model parameter identification method, control method and application field, are summarized in an all-round way. Finally, the future research direction of LPV system modeling and control is prospected. Copyright © 2021 Acta Automatica Sinica. All rights reserved.
引用
收藏
页码:780 / 790
页数:10
相关论文
共 109 条
  • [21] Chen L, Khatibisepehr S, Huang B, Liu F, Ding Y S., Nonlinear process identification in the presence of multiple correlated hidden scheduling variables with missing data, AIChE Journal, 61, 10, pp. 3270-3287, (2015)
  • [22] Xu Z H, Zhao J, Qian J X, Zhu Y C., Nonlinear MPC using an identified LPV model, Industrial & Engineering Chemistry Research, 48, 6, pp. 3043-3051, (2009)
  • [23] Toth R, Abbas H S, Werner H., On the state-space realization of LPV input-output models: Practical approaches, IEEE Transactions on Control Systems Technology, 20, 1, pp. 139-153, (2012)
  • [24] Duarte R F M, Pool D M, van Paassen M M, Mulder M., Experimental scheduling functions for global LPV human controller modeling, IFAC-PapersOnLine, 50, 1, pp. 15853-15858, (2017)
  • [25] De Caigny J, Pintelon R, Camino J F, Swevers J., Interpolated modeling of LPV systems, IEEE Transactions on Control Systems Technology, 22, 6, pp. 2232-2246, (2014)
  • [26] Bamieh B, Giarre L., Identification of linear parameter varying models, Proceedings of the 38th IEEE Conference on Decision and Control, pp. 1505-1510, (1999)
  • [27] Bamieh B, Giarre L., Identification of linear parameter varying models, International Journal of Robust and Nonlinear Control, 12, 9, pp. 841-853, (2002)
  • [28] Zhao Y, Huang B, Su H Y, Chu J., Prediction error method for identification of LPV models, Journal of Process Control, 22, 1, pp. 180-193, (2012)
  • [29] Golabi A, Meskin N, Toth R, Mohammadpour J., A Bayesian approach for LPV model identification and its application to complex processes, IEEE Transactions on Control Systems Technology, 25, 6, pp. 2160-2167, (2017)
  • [30] van Wingerden J W, Verhaegen M., Subspace identification of Bilinear and LPV systems for open- and closed-loop data, Automatica, 45, 2, pp. 372-381, (2009)