Advances in Modeling and Control of Linear Parameter Varying Systems

被引:0
|
作者
Wang D.-F. [1 ,2 ]
Zhu W.-Q. [1 ]
机构
[1] Department of Automation, North China Electric Power University, Baoding
[2] Hebei Engineering Research Center of Simulation & Optimized Power Generation, North China Electric Power University, Baoding
来源
Zidonghua Xuebao/Acta Automatica Sinica | 2021年 / 47卷 / 04期
基金
中国国家自然科学基金;
关键词
Linear parameter varying (LPV) system; Model identification; Predictive control; Robust control; System modeling; Varying gain control;
D O I
10.16383/j.aas.c180718
中图分类号
学科分类号
摘要
Linear parameter varying (LPV) model has great advantages in describing the nonlinear and time-varying characteristics of practical systems. The LPV model can be used to solve the control problems of nonlinear systems by using some mature linear system control theories. In this paper, the research results of LPV system in recent years, such as model structure and modeling method, model parameter identification method, control method and application field, are summarized in an all-round way. Finally, the future research direction of LPV system modeling and control is prospected. Copyright © 2021 Acta Automatica Sinica. All rights reserved.
引用
收藏
页码:780 / 790
页数:10
相关论文
共 109 条
  • [1] Yuan Shi-Tong, Research on Modeling Theory and Method for 1000 MW Ultra Supercritical Unit, (2015)
  • [2] Yin S, Luo H, Ding S X., Real-time implementation of fault-tolerant control systems with performance optimization, IEEE Transactions on Industrial Electronics, 61, 5, pp. 2402-2411, (2014)
  • [3] Shamma J S, Athans M., Guaranteed properties of gain scheduled control for linear parameter-varying plants, Automatica, 27, 3, pp. 559-564, (1991)
  • [4] Chang H, Krieger A, Astolfi A, Pistikopoulos E N., Robust multi-parametric model predictive control for LPV systems with application to anaesthesia, Journal of Process Control, 24, 10, pp. 1538-1547, (2014)
  • [5] Toth R, Lyzell C, Enqvist M, Heuberger P S C, Van den Hof P M J., Order and structural dependence selection of LPV-ARX models using a nonnegative garrote approach, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) Held Jointly with 2009 28th Chinese Control Conference, pp. 7406-7411, (2009)
  • [6] Liptak G, Luspay T, Peni T, Takarics B, Vanek B., LPV model reduction methods for aeroelastic structures, IFAC-PapersOnLine, 50, 1, pp. 6344-6349, (2017)
  • [7] Wang D F, Yuan S T., Identification of LPV model for superheated steam temperature system using A-QPSO, Simulation Modelling Practice and Theory, 69, pp. 1-13, (2016)
  • [8] Yang Xian-Qiang, Identification of Linear Parameter Variation System, (2014)
  • [9] Laurain V, Gilson M, Toth R, Garnier H., Refined instrumental variable methods for identification of LPV Box-Jenkins models, Automatica, 46, 6, pp. 959-967, (2010)
  • [10] Yang X Q, Huang B, Zhao Y J, Lu Y J, Xiong W L, Gao H J., Generalized expectation-maximization approach to LPV process identification with randomly missing output data, Chemometrics and Intelligent Laboratory Systems, 148, pp. 1-8, (2015)