Electric vehicle pre-charging path planning with multi-agent participation in the internet of vehicles

被引:1
|
作者
Liu, Dong-Qi [1 ,2 ]
Xie, Jin-Huan [1 ]
Wang, Yao-Nan [2 ]
机构
[1] School of Electrical and Information Engineering, Changsha University of Science and Technology, Hunan, Changsha,410114, China
[2] National Engineering Research Center of Robot Vision Perception and Control Technology, Hunan University, Hunan, Changsha,410012, China
关键词
22;
D O I
10.7641/CTA.2023.20280
中图分类号
学科分类号
摘要
引用
收藏
页码:1438 / 1450
相关论文
共 50 条
  • [21] Distributed Multi-Agent Reinforcement Learning for Collaborative Path Planning and Scheduling in Blockchain-Based Cognitive Internet of Vehicles
    Chang, Huigang
    Liu, Yiming
    Sheng, Zhengguo
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (05) : 6301 - 6317
  • [22] Multi-Agent Graph Convolutional Reinforcement Learning for Dynamic Electric Vehicle Charging Pricing
    Zhang, Weijia
    Liu, Hao
    Han, Jindong
    Ge, Yong
    Xiong, Hui
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 2471 - 2481
  • [23] Distributed and Multi-Agent Reinforcement Learning Framework for Optimal Electric Vehicle Charging Scheduling
    Korkas, Christos D.
    Tsaknakis, Christos D.
    Kapoutsis, Athanasios Ch.
    Kosmatopoulos, Elias
    ENERGIES, 2024, 17 (15)
  • [24] Multi-Agent Path Planning with Heterogeneous Cooperation
    Otaki, Keisuke
    Koide, Satoshi
    Hayakawa, Keiichiro
    Okoso, Ayano
    Nishi, Tomoki
    2019 IEEE 31ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2019), 2019, : 93 - 100
  • [25] Multi-agent path planning with nonlinear restrictions
    Juliana Veiga C. F. de Lima
    Eduardo Morgado Belo
    Vinícius Abrão da Silva Marques
    Evolutionary Intelligence, 2021, 14 : 191 - 201
  • [26] Constrained Multi-agent Path Planning Problem
    Maktabifard, Ali
    Foldes, David
    Bak, Bendeguz Dezso
    COMPUTATIONAL LOGISTICS, ICCL 2023, 2023, 14239 : 450 - 466
  • [27] Proximal Operators for Multi-Agent Path Planning
    Bento, Jose
    Derbinsky, Nate
    Mathy, Charles
    Yedidia, Jonathan S.
    PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 3657 - 3663
  • [28] Path Planning Strategy Based on Principal Component Federation for Multi-Agent in Connected Vehicles
    Li, Ruonan
    Qin, Yang
    Liu, Jie
    Zang, Lu
    Li, Jinlong
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024,
  • [29] Planning and Learning in Multi-Agent Path Finding
    K. S. Yakovlev
    A. A. Andreychuk
    A. A. Skrynnik
    A. I. Panov
    Doklady Mathematics, 2022, 106 : S79 - S84
  • [30] Planning and Learning in Multi-Agent Path Finding
    Yakovlev, K. S.
    Andreychuk, A. A.
    Skrynnik, A. A.
    Panov, A. I.
    DOKLADY MATHEMATICS, 2022, 106 (SUPPL 1) : S79 - S84