Robust MPC design for multi-model infinite-dimensional distributed parameter systems

被引:0
作者
Zhang, Lu [1 ]
Xie, Junyao [1 ]
Koch, Charles Robert [2 ]
Dubljevic, Stevan [1 ]
机构
[1] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 2V4, Canada
[2] Univ Alberta, Dept Mech Engn, Edmonton, AB T6G 2V4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Distributed parameter systems; Partial differential equations; Robust model predictive control; Multi-model uncertainty; MODEL-PREDICTIVE CONTROL; STABILITY;
D O I
10.1016/j.jprocont.2024.103316
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Infinite-dimensional systems are essential for describing complex phenomena that exhibit continuous spatial and temporal variations. This article introduces a robust model predictive control (RMPC) design to regulate constrained multi-model infinite-dimensional systems governed by a class of hyperbolic/parabolic partial differential equations (PDEs). Model uncertainty stems from system parameters that are imprecisely determined, but can be quantitatively characterized within a certain range. The RMPC algorithm is designed in a discrete-time infinite-dimensional setting, achieved through the structure-preserving Cayley-Tustin transformation without model reduction nor spatial approximation. Robustness of the controller is ensured via constraining the future cost for each model dynamics accounting for uncertainty description. Properties of the closed-loop system are discussed, including feasibility, convergence, and asymptotic stability. The proposed controller is implemented by considering three typical infinite-dimensional distributed parameter process models, with simulation demonstrating the effectiveness and enhanced performance of the RMPC over the nominal model predictive controller.
引用
收藏
页数:10
相关论文
共 37 条
  • [1] Robust model predictive control of stable linear systems
    Badgwell, TA
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1997, 68 (04) : 797 - 818
  • [2] Curtain R. F., 1997, Proceedings of the Fourth International Symposium on Methods and Models in Automation and Robotics, P861
  • [3] Curtain R. F., 2020, INTRO INFINITE DIMEN, DOI [10.1007/978-1-4612-4224-6, DOI 10.1007/978-1-4612-4224-6]
  • [4] Model predictive control for regular linear systems
    Dubljevic, Stevan
    Humaloja, Jukka-Pekka
    [J]. AUTOMATICA, 2020, 119
  • [5] A robust multi-model predictive controller for distributed parameter systems
    Garcia, Miriam R.
    Vilas, Carlos
    Santos, Lino O.
    Alonso, Antonio A.
    [J]. JOURNAL OF PROCESS CONTROL, 2012, 22 (01) : 60 - 71
  • [6] Grüne L, 2017, COMMUN CONTROL ENG, P45, DOI 10.1007/978-3-319-46024-6_3
  • [7] Asymptotic stability and transient optimality of economic MPC without terminal conditions
    Gruene, Lars
    Stieler, Marleen
    [J]. JOURNAL OF PROCESS CONTROL, 2014, 24 (08) : 1187 - 1196
  • [8] The Cayley transform as a time discretization scheme
    Havu, V.
    Malinen, J.
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2007, 28 (7-8) : 825 - 851
  • [9] Havu V, 2005, IEEE DECIS CONTR P, P5971
  • [10] Humaloja JP, 2022, P AMER CONTR CONF, P3476, DOI 10.23919/ACC53348.2022.9867891