Parametric Energy and Economic Analysis of Modified Combined Cycle Power Plant with Vapor Absorption and Organic Rankine Cycle

被引:0
|
作者
Moiz, Abdul [1 ]
Shahzaib, Malik [1 ]
Memon, Abdul Ghafoor [1 ]
Kumar, Laveet [2 ]
Assad, Mamdouh El Haj [3 ]
机构
[1] Department of Mechanical Engineering, Mehran University of Engineering and Technology, Jamshoro,76060, Pakistan
[2] Department of Mechanical Engineering, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar
[3] Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah,27272, United Arab Emirates
关键词
Combined cycle power plants - Exhaust gases - Gas turbines;
D O I
10.32604/ee.2024.051214
中图分类号
学科分类号
摘要
To meet the escalating electricity demand and rising fuel costs, along with notable losses in power transmission, exploring alternative solutions is imperative. Gas turbines demonstrate high efficiency under ideal International Organization for Standardization (ISO) conditions but face challenges during summer when ambient temperatures reach 40°C. To enhance performance, the proposal suggests cooling inlet air by 15°C using a vapor absorption chiller (VAC), utilizing residual exhaust gases from a combined cycle power plant (CCPP) to maximize power output. Additionally, diverting a portion of exhaust gases to drive an organic Rankine cycle (ORC) for supplementary power generation offers added efficiency. This integrated approach not only boosts power output but also minimizes environmental impact by repurposing exhaust gases for additional operations. This study presents a detailed energy and economic analysis of a modified combine cycle power plant, in Kotri, Pakistan. R600A is used as organic fuel for the ORC while LiBr-H2 O solution is used for the VAC. Two performance parameters, efficiency and energy utilization factor, Four energetic parameters, Work output of ORC, modified CCPP, original CCPP and cooling rate, and one economics parameter, payback period were examined under varying ambient conditions and mass fraction of exhaust gases from outlet of a gas turbine (ψ). A parametric investigation was conducted within the temperature range of 18°C to 50°C, relative humidity between 70% and 90%, and the ψ ranging from 0 to 0.3. The findings reveal that under elevated ambient conditions (40°C, 90% humidity) with ψ at 0, the Energy Utilization Factor (EUF) exceeds 60%. However, the ORC exhibits a low work output of 100 KW alongside a high cooling load of 29,000 kW. Conversely, the modified system demonstrates an augmented work output of approximately 81,850 KW compared to the original system’s 78,500 KW. Furthermore, the integration of this system proves advantageous across all metrics. Additionally, the payback period of the system is contingent on ambient conditions, with lower conditions correlating to shorter payback periods and vice versa. © 2024 The Authors. Published by Tech Science Press.
引用
收藏
页码:3095 / 3120
相关论文
共 50 条
  • [1] Energy, economic, and environmental analysis of combined heating and power-organic Rankine cycle and combined cooling, heating, and power-organic Rankine cycle systems
    Hueffed, A. K.
    Mago, P. J.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY, 2011, 225 (A1) : 24 - 32
  • [2] Parametric analysis and multi-objective optimization of a combined Organic Rankine Cycle and Vapor Compression Cycle
    Zhar, Rania
    Allouhi, Amine
    Ghodbane, Mokhtar
    Jamil, Abdelmajid
    Lahrech, Khadija
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2021, 47
  • [3] Performance analysis of a combined organic Rankine cycle and vapor compression cycle for power and refrigeration cogeneration
    Kim, Kyoung Hoon
    Perez-Blanco, Horacio
    APPLIED THERMAL ENGINEERING, 2015, 91 : 964 - 974
  • [4] Performance evaluation of a combined cycle power plant integrated with organic Rankine cycle and absorption refrigeration system
    Njoku, I. H.
    Oko, C. O. C.
    Ofodu, J. C.
    COGENT ENGINEERING, 2018, 5 (01):
  • [5] Energy, exergy and parametric analysis of a combined cycle power plant
    Aliyu, Mansur
    AlQudaihi, Ahmad B.
    Said, Syed A. M.
    Habib, Mohamed A.
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2020, 15
  • [6] Exergo-Economic and Parametric Analysis of Waste Heat Recovery from Taji Gas Turbines Power Plant Using Rankine Cycle and Organic Rankine Cycle
    Kareem, Alaa Fadhil
    Akroot, Abdulrazzak
    Wahhab, Hasanain Abdul A.
    Talal, Wadah
    Ghazal, Rabeea M.
    Alfaris, Ali
    SUSTAINABILITY, 2023, 15 (12)
  • [7] Parametric Analysis of a Power and Water Combined System Based on a Top Organic Rankine Cycle
    He, W. F.
    Han, D.
    Zhu, W. P.
    Huang, L.
    Zhang, X. K.
    JOURNAL OF ENERGY ENGINEERING, 2018, 144 (04)
  • [8] Thermodynamic and economic analysis of organic Rankine cycle combined with flash cycle and ejector
    Niu, Jintao
    Wang, Jiansheng
    Liu, Xueling
    ENERGY, 2023, 282
  • [9] Energy and exergy optimization of a combined solar/geothermal organic Rankine cycle power plant
    Maali, Rafika
    Khir, Tahar
    Arici, Muslum
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2023, 30 (11) : 3601 - 3616
  • [10] SUBCRITICAL ORGANIC RANKINE CYCLE BASED GEOTHERMAL POWER PLANT THERMODYNAMIC AND ECONOMIC ANALYSIS
    Mustapic, Nenad
    Brkic, Vladislav
    Kerin, Matija
    THERMAL SCIENCE, 2018, 22 (05): : 2137 - 2150