UNeXt: An Efficient Network for the Semantic Segmentation of High-Resolution Remote Sensing Images

被引:1
|
作者
Chang, Zhanyuan [1 ]
Xu, Mingyu [1 ]
Wei, Yuwen [1 ]
Lian, Jie [1 ]
Zhang, Chongming [1 ]
Li, Chuanjiang [1 ]
机构
[1] Shanghai Normal Univ, Coll Informat Mech & Elect Engn, Shanghai 200234, Peoples R China
基金
上海市自然科学基金;
关键词
high-resolution remote sensing images; real-time semantic segmentation; convolutional attention; global-local context; transformer;
D O I
10.3390/s24206655
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The application of deep neural networks for the semantic segmentation of remote sensing images is a significant research area within the field of the intelligent interpretation of remote sensing data. The semantic segmentation of remote sensing images holds great practical value in urban planning, disaster assessment, the estimation of carbon sinks, and other related fields. With the continuous advancement of remote sensing technology, the spatial resolution of remote sensing images is gradually increasing. This increase in resolution brings about challenges such as significant changes in the scale of ground objects, redundant information, and irregular shapes within remote sensing images. Current methods leverage Transformers to capture global long-range dependencies. However, the use of Transformers introduces higher computational complexity and is prone to losing local details. In this paper, we propose UNeXt (UNet+ConvNeXt+Transformer), a real-time semantic segmentation model tailored for high-resolution remote sensing images. To achieve efficient segmentation, UNeXt uses the lightweight ConvNeXt-T as the encoder and a lightweight decoder, Transnext, which combines a Transformer and CNN (Convolutional Neural Networks) to capture global information while avoiding the loss of local details. Furthermore, in order to more effectively utilize spatial and channel information, we propose a SCFB (SC Feature Fuse Block) to reduce computational complexity while enhancing the model's recognition of complex scenes. A series of ablation experiments and comprehensive comparative experiments demonstrate that our method not only runs faster than state-of-the-art (SOTA) lightweight models but also achieves higher accuracy. Specifically, our proposed UNeXt achieves 85.2% and 82.9% mIoUs on the Vaihingen and Gaofen5 (GID5) datasets, respectively, while maintaining 97 fps for 512 x 512 inputs on a single NVIDIA GTX 4090 GPU, outperforming other SOTA methods.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] MsanlfNet: Semantic Segmentation Network With Multiscale Attention and Nonlocal Filters for High-Resolution Remote Sensing Images
    Bai, Lin
    Lin, Xiangyuan
    Ye, Zhen
    Xue, Dongling
    Yao, Cheng
    Hui, Meng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [22] SCAttNet: Semantic Segmentation Network With Spatial and Channel Attention Mechanism for High-Resolution Remote Sensing Images
    Li, Haifeng
    Qiu, Kaijian
    Chen, Li
    Mei, Xiaoming
    Hong, Liang
    Tao, Chao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (05) : 905 - 909
  • [23] Cross-Scale Feature Propagation Network for Semantic Segmentation of High-Resolution Remote Sensing Images
    Zeng, Qiaolin
    Zhou, Jingxiang
    Niu, Xuerui
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [24] IMPROVING SEMANTIC SEGMENTATION OF HIGH-RESOLUTION REMOTE SENSING IMAGES USING WASSERSTEIN GENERATIVE ADVERSARIAL NETWORK
    Hosseinpour, H. R.
    Samadzadegan, F.
    Javan, F. Dadrass
    Motayyeb, S.
    ISPRS GEOSPATIAL CONFERENCE 2022, JOINT 6TH SENSORS AND MODELS IN PHOTOGRAMMETRY AND REMOTE SENSING, SMPR/ 4TH GEOSPATIAL INFORMATION RESEARCH, GIRESEARCH CONFERENCES, VOL. 48-4, 2023, : 45 - 51
  • [25] We Need to Communicate: Communicating Attention Network for Semantic Segmentation of High-Resolution Remote Sensing Images
    Meng, Xichen
    Zhu, Liqun
    Han, Yilong
    Zhang, Hanchao
    REMOTE SENSING, 2023, 15 (14)
  • [26] MFALNet: A Multiscale Feature Aggregation Lightweight Network for Semantic Segmentation of High-Resolution Remote Sensing Images
    Lv, Liang
    Guo, Yiyou
    Bao, Tengfei
    Fu, Chenqin
    Huo, Hong
    Fang, Tao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (12) : 2172 - 2176
  • [27] Semantic segmentation of high-resolution remote sensing images using fully convolutional network with adaptive threshold
    Wu, Zhihuan
    Gao, Yongming
    Li, Lei
    Xue, Junshi
    Li, Yuntao
    CONNECTION SCIENCE, 2019, 31 (02) : 169 - 184
  • [28] Class-Guidance Network Based on the Pyramid Vision Transformer for Efficient Semantic Segmentation of High-Resolution Remote Sensing Images
    Du, Shuang
    Liu, Maohua
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 5578 - 5589
  • [29] Semantic Descriptions of High-Resolution Remote Sensing Images
    Wang, Binqiang
    Lu, Xiaoqiang
    Zheng, Xiangtao
    Li, Xuelong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (08) : 1274 - 1278
  • [30] High-resolution remote sensing images semantic segmentation using improved UNet and SegNet
    Wang, Xin
    Jing, Shihan
    Dai, Huifeng
    Shi, Aiye
    COMPUTERS & ELECTRICAL ENGINEERING, 2023, 108