Nonlinear Optimization Using Adaptive Restarting Conjugate Gradient Methods; [적응 재시작 공액 기울기 방법을 사용한 비선형 최적화]

被引:0
作者
Kim, Sung-Soo [1 ]
机构
[1] Dept. of Electrical and Electronic Engineering, Chungbuk national University
关键词
Adaptive Restart; Stagnation; Unconstrained nonlinear conjugate gradient methods;
D O I
10.5370/KIEE.2024.73.8.1437
中图分类号
学科分类号
摘要
Conjugate gradient methods are optimization techniques used to minimize cost functions in nonconvex problem domains. However, in non-quadratic conjugate gradient methods, challenges often arise due to exact line searches and the need for effective restart procedures to enhance convergence properties. This paper introduces a modified conjugate gradient method that incorporates adaptive restarting, specifically designed for nonconvex objective functions, with the goal of preventing stagnation in convergence iterations. The adaptive restarting conjugate gradient approach aims to increase the likelihood of eliminating convergence stagnation. Through numerical investigations, the paper demonstrates the superior performance of the proposed restarting method, showcasing improved convergence behavior by effectively mitigating stagnation in the convergence process. © The Korean Institute of Electrical Engineers.
引用
收藏
页码:1437 / 1448
页数:11
相关论文
共 19 条
  • [1] Hestenes Magnus R., Stiefel Eduard, Methods of Conjugate Gradients for Solving Linear Systems, Journal of Research of the National Bureau of Standards, 49, 6, pp. 409-436, (1952)
  • [2] Fletcher R., Reeves C. M., Function minimization by conjugate gradients, Computer. J, 7, 2, pp. 149-154, (1964)
  • [3] Polyak Boris T., The Conjugate Gradient method in extreme problem, pp. 94-112, (1969)
  • [4] Polak E., Ribiere G., Note sur la convergence de méthodes de directions conjugués, Revnue franaise d’informatique et de recherche opérationnelle, 3, 1, pp. 35-43, (1969)
  • [5] Powell M. J. D., Restart Procedures for the Conjugate Gradient Method, Mathematical Programming, 12, pp. 241-254, (1977)
  • [6] Fletcher R., Practical Methods of Optimization, vol. 1: Unconstrained Optimization, pp. 80-87, (1987)
  • [7] Polyak Borris T., Introduction to Optimization, pp. 95-116, (1987)
  • [8] Golub Gene H., O'Leary Dianne P., Some history of the Conjugate Gradient and Lanczos Algorithms: 1948-1976, SIAM Review, 31, 1, pp. 50-102, (1989)
  • [9] Touati-Ahmed D., Storey C., Efficient Hybrid Conjugate Techniques, J. of Optimization Theory and Applications, 64, 2, (1990)
  • [10] Chong Edwin K. O., Zak Stanislaw H., An Introduction to Optimization, pp. 151-186, (1996)