Impact of social learning on privacy-preserving data collection

被引:1
|
作者
Akbay A.B. [1 ]
Wang W. [2 ]
Zhang J. [1 ]
机构
[1] The School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, 85281, AZ
[2] The Department of Computer Science, Carnegie Mellon University, Pittsburgh, 15213, PA
来源
Akbay, Abdullah Basar (aakbay@asu.edu) | 1600年 / Institute of Electrical and Electronics Engineers Inc.卷 / 02期
关键词
Crowdsourcing; Data collection; Differential privacy; Social networks;
D O I
10.1109/JSAIT.2021.3053545
中图分类号
学科分类号
摘要
We study a game-theoretic model where a data collector purchases data from users through a payment mechanism. Each user has her personal signal which represents her knowledge about the underlying state the data collector desires to learn. Through social interactions, each user can also learn noisy versions of her friends’ personal signals, which are called ‘group signals’. We develop a Bayesian game theoretic framework to study the impact of social learning on users’ data reporting strategies and devise the payment mechanism for the data collector accordingly. We show that the Bayesian-Nash equilibrium can be in the form of either a symmetric randomized response (SR) strategy or an informative non-disclosive (ND) strategy. Specifically, a generalized majority voting rule is applied by each user to her noisy group signals to determine which strategy to follow. Our findings reveal that both the data collector and the users can benefit from social learning which drives down the privacy costs and helps to improve the state estimation for a given total payment budget. Further, we derive bounds on the minimum total payment required to achieve a given level of state estimation accuracy. © 2021 IEEE.
引用
收藏
页码:268 / 282
页数:14
相关论文
共 50 条
  • [41] Privacy-Preserving Approach PBCN in Social Network With Differential Privacy
    Huang, Haiping
    Zhang, Dongjun
    Xiao, Fu
    Wang, Kai
    Gu, Jiateng
    Wang, Ruchuan
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2020, 17 (02): : 931 - 945
  • [42] Privacy-preserving collaborative social network data publishing against colluding data providers
    Kadhiwala, Bintu
    Patel, Sankita J.
    INTERNATIONAL JOURNAL OF INFORMATION AND COMPUTER SECURITY, 2022, 19 (3-4) : 346 - 378
  • [43] Privacy-preserving join decision in social networks
    Yao, Y.-F. (yao_yifei@126.com), 1600, University of Science and Technology Beijing (36): : 695 - 700
  • [44] Random dictatorship for privacy-preserving social choice
    Torra, Vicenc
    INTERNATIONAL JOURNAL OF INFORMATION SECURITY, 2020, 19 (05) : 537 - 545
  • [45] Privacy-preserving federated learning on lattice quantization
    Zhang, Lingjie
    Zhang, Hai
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2023, 21 (06)
  • [46] Random dictatorship for privacy-preserving social choice
    Vicenç Torra
    International Journal of Information Security, 2020, 19 : 537 - 545
  • [47] Privacy-Preserving News Recommendation Model Learning
    Qi, Tao
    Wu, Fangzhao
    Wu, Chuhan
    Huang, Yongfeng
    Xie, Xing
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2020, 2020, : 1423 - 1432
  • [48] Achieving Consensus in Privacy-Preserving Decentralized Learning
    Xiang, Liyao
    Wang, Lingdong
    Wang, Shufan
    Li, Baochun
    2020 IEEE 40TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS), 2020, : 899 - 909
  • [49] Privacy-Preserving Cost-Sensitive Learning
    Yang, Yi
    Huang, Shuai
    Huang, Wei
    Chang, Xiangyu
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (05) : 2105 - 2116
  • [50] SecDM: privacy-preserving data outsourcing framework with differential privacy
    Dagher, Gaby G.
    Fung, Benjamin C. M.
    Mohammed, Noman
    Clark, Jeremy
    KNOWLEDGE AND INFORMATION SYSTEMS, 2020, 62 (05) : 1923 - 1960