Local Density Estimation Procedure for Autoregressive Modeling of Point Process Data

被引:0
|
作者
Pavasant, Nat [1 ]
Morita, Takashi [2 ]
Numao, Masayuki [2 ]
Fukui, Ken-ichi [2 ]
机构
[1] Osaka Univ, Grad Sch Engn, Suita 5650871, Japan
[2] Osaka Univ, SANKEN Inst Sci & Ind Res, Ibaraki 5670047, Japan
关键词
point process; vector autoregressive; kernel density;
D O I
10.1587/transinf.2023EDL8084
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We proposed a procedure to pre-process data used in a vector autoregressive (VAR) modeling of a temporal point process by using kernel density estimation. Vector autoregressive modeling of point-process data, for example, is being used for causality inference. The VAR model discretizes the timeline into small windows, and creates a time series by the presence of events in each window, and then models the presence of an event at the next time step by its history. The problem is that to get a longer history with high temporal resolution required a large number of windows, and thus, model parameters. We proposed the local density estimation procedure, which, instead of using the binary presence as the input to the model, performed kernel density estimation of the event history, and discretized the estimation to be used as the input. This allowed us to reduce the number of model parameters, especially in sparse data. Our experiment on a sparse Poisson process showed that this procedure vastly increases model prediction performance.
引用
收藏
页码:1453 / 1457
页数:5
相关论文
共 41 条
  • [31] Fast maximum likelihood estimation using continuous-time neural point process models
    Lepage, Kyle Q.
    MacDonald, Christopher J.
    JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2015, 38 (03) : 499 - 519
  • [32] The Influence of Data Classification Methods on Predictive Accuracy of Kernel Density Estimation Hotspot Maps
    Milic, Nenad
    Popovic, Brankica
    Mijalkovic, Sasa
    Marinkovic, Darko
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2019, 16 (06) : 1053 - 1062
  • [33] Second-order analysis of inhomogeneous spatio-temporal point process data
    Gabriel, Edith
    Diggle, Peter J.
    STATISTICA NEERLANDICA, 2009, 63 (01) : 43 - 51
  • [34] Estimating animal resource selection from telemetry data using point process models
    Johnson, Devin S.
    Hooten, Mevin B.
    Kuhn, Carey E.
    JOURNAL OF ANIMAL ECOLOGY, 2013, 82 (06) : 1155 - 1164
  • [35] Partial-Likelihood Analysis of Spatio-Temporal Point-Process Data
    Diggle, Peter J.
    Kaimi, Irene
    Abellana, Rosa
    BIOMETRICS, 2010, 66 (02) : 347 - 354
  • [36] Rigorous home range estimation with movement data: a new autocorrelated kernel density estimator
    Fleming, C. H.
    Fagan, W. F.
    Mueller, T.
    Olson, K. A.
    Leimgruber, P.
    Calabrese, J. M.
    ECOLOGY, 2015, 96 (05) : 1182 - 1188
  • [37] Tracking Fast Neural Adaptation by Globally Adaptive Point Process Estimation for Brain-Machine Interface
    Chen, Shuhang
    Zhang, Xiang
    Shen, Xiang
    Huang, Yifan
    Wang, Yiwen
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2021, 29 : 1690 - 1700
  • [38] Measuring concurrency using a joint multistate and point process model for retrospective sexual history data
    Aralis, Hilary J.
    Gorbach, Pamina M.
    Brookmeyer, Ron
    STATISTICS IN MEDICINE, 2016, 35 (24) : 4459 - 4473
  • [39] Unleashing the power of three-dimensional kernel density estimation for Doppler Velocimeter data despiking
    Asgari, Farzad
    Mohajeri, Seyed Hossein
    Mehraein, Mojtaba
    MEASUREMENT, 2024, 225
  • [40] Mortality Prediction in Severe Congestive Heart Failure Patients With Multifractal Point-Process Modeling of Heartbeat Dynamics
    Valenza, Gaetano
    Wendt, Herwig
    Kiyono, Ken
    Hayano, Junichro
    Watanabe, Eiichi
    Yamamoto, Yoshiharu
    Abry, Patrice
    Barbieri, Riccardo
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2018, 65 (10) : 2345 - 2354