Local Density Estimation Procedure for Autoregressive Modeling of Point Process Data

被引:0
|
作者
Pavasant, Nat [1 ]
Morita, Takashi [2 ]
Numao, Masayuki [2 ]
Fukui, Ken-ichi [2 ]
机构
[1] Osaka Univ, Grad Sch Engn, Suita 5650871, Japan
[2] Osaka Univ, SANKEN Inst Sci & Ind Res, Ibaraki 5670047, Japan
关键词
point process; vector autoregressive; kernel density;
D O I
10.1587/transinf.2023EDL8084
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We proposed a procedure to pre-process data used in a vector autoregressive (VAR) modeling of a temporal point process by using kernel density estimation. Vector autoregressive modeling of point-process data, for example, is being used for causality inference. The VAR model discretizes the timeline into small windows, and creates a time series by the presence of events in each window, and then models the presence of an event at the next time step by its history. The problem is that to get a longer history with high temporal resolution required a large number of windows, and thus, model parameters. We proposed the local density estimation procedure, which, instead of using the binary presence as the input to the model, performed kernel density estimation of the event history, and discretized the estimation to be used as the input. This allowed us to reduce the number of model parameters, especially in sparse data. Our experiment on a sparse Poisson process showed that this procedure vastly increases model prediction performance.
引用
收藏
页码:1453 / 1457
页数:5
相关论文
共 41 条
  • [1] POINT PROCESS MODELING OF DRUG OVERDOSES WITH HETEROGENEOUS AND MISSING DATA
    Liu, Xueying
    Carter, Jeremy
    Ray, Brad
    Mohler, George
    ANNALS OF APPLIED STATISTICS, 2021, 15 (01) : 88 - 101
  • [2] On the Estimation of Periodicity or Almost Periodicity in Inhomogeneous Gamma Point-Process Data
    Saul Gaitan, Rodrigo
    Lii, Keh-Shin
    JOURNAL OF TIME SERIES ANALYSIS, 2021, 42 (5-6) : 711 - 736
  • [3] Point Process Estimation with Mirror Prox Algorithms
    He, Niao
    Harchaoui, Zaid
    Wang, Yichen
    Song, Le
    APPLIED MATHEMATICS AND OPTIMIZATION, 2020, 82 (03) : 919 - 947
  • [4] Point Process Estimation with Mirror Prox Algorithms
    Niao He
    Zaid Harchaoui
    Yichen Wang
    Le Song
    Applied Mathematics & Optimization, 2020, 82 : 919 - 947
  • [5] Reduced-bias estimation of spatial autoregressive models with incompletely geocoded data
    Santi, Flavio
    Dickson, Maria Michela
    Giuliani, Diego
    Arbia, Giuseppe
    Espa, Giuseppe
    COMPUTATIONAL STATISTICS, 2021, 36 (04) : 2563 - 2590
  • [6] Self-Exciting Point Process Modeling of Crime
    Mohler, G. O.
    Short, M. B.
    Brantingham, P. J.
    Schoenberg, F. P.
    Tita, G. E.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (493) : 100 - 108
  • [7] Estimation of the density of a clustered point pattern using a distance method
    Picard, Nicolas
    Bar-Hen, Avner
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2007, 14 (04) : 341 - 353
  • [8] Estimation of the density of a clustered point pattern using a distance method
    Nicolas Picard
    Avner Bar-Hen
    Environmental and Ecological Statistics, 2007, 14 : 341 - 353
  • [9] A note on kernel density estimation for undirected dyadic data
    Szydlowski, Arkadiusz
    ECONOMETRIC REVIEWS, 2025,
  • [10] A functional marked point process model for lupus data
    Fok, Carlotta Ching Ting
    Ramsay, James O.
    Abrahamowicz, Michal
    Fortin, Paul
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2012, 40 (03): : 517 - 529