An Evidential-Enhanced Tri-Branch Consistency Learning Method for Semi-Supervised Medical Image Segmentation

被引:2
作者
Zhang, Zhenxi [1 ]
Zhou, Heng [2 ]
Shi, Xiaoran [1 ]
Ran, Ran [3 ]
Tian, Chunna [4 ]
Zhou, Feng [1 ]
机构
[1] Xidian Univ, Minist Educ, Key Lab Elect Informat Counter Measure & Simulat, Xian 710071, Peoples R China
[2] Jiangnan Univ, Sch Artificial Intelligence & Comp Sci, Wuxi 214122, Peoples R China
[3] Xi An Jiao Tong Univ, Affiliated Hosp 1, Dept Med Oncol, Xian 710061, Peoples R China
[4] Xidian Univ, Sch Elect Engn, Xian 710071, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Consistency learning; evidential learning; med- ical image segmentation; semi-supervised learning; NETWORK; FUSION; AWARE;
D O I
10.1109/TIM.2024.3488143
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The semi-supervised segmentation presents a promising approach for large-scale medical image analysis, effectively reducing annotation burdens while achieving comparable performance. This methodology holds substantial potential for streamlining the segmentation process and enhancing its feasibility within clinical settings for translational investigations. While cross-supervised training, based on distinct co-training subnetworks, has become a prevalent paradigm for this task, addressing critical issues, such as predication disagreement and label-noise suppression requires further attention and progress in cross-supervised training. In this article, we introduce an evidential tri-branch consistency learning framework (ETC-Net) for semi-supervised medical image segmentation. ETC-Net employs three branches: an evidential conservative branch (ECB), an evidential progressive branch (EPB), and an evidential fusion branch (EFB). The first two branches exhibit complementary characteristics, allowing them to address prediction diversity and enhance training stability. We also integrate uncertainty estimation from the evidential learning into cross-supervised training, mitigating the negative impact of erroneous supervision signals. In addition, the EFB capitalizes on the complementary attributes of the first two branches and leverages an evidence-based Dempster-Shafer fusion strategy, supervised by more reliable and accurate pseudolabels of unlabeled data. Extensive experiments conducted on LA, Pancreas-CT, and automated cardiac diagnosis challenge (ACDC) datasets demonstrate that ETC-Net surpasses other state-of-the-art methods for semi-supervised segmentation.
引用
收藏
页数:13
相关论文
共 49 条
[1]   Pseudo-Labeling and Confirmation Bias in Deep Semi-Supervised Learning [J].
Arazo, Eric ;
Ortego, Diego ;
Albert, Paul ;
O'Connor, Noel E. ;
McGuinness, Kevin .
2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
[2]   Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? [J].
Bernard, Olivier ;
Lalande, Alain ;
Zotti, Clement ;
Cervenansky, Frederick ;
Yang, Xin ;
Heng, Pheng-Ann ;
Cetin, Irem ;
Lekadir, Karim ;
Camara, Oscar ;
Gonzalez Ballester, Miguel Angel ;
Sanroma, Gerard ;
Napel, Sandy ;
Petersen, Steffen ;
Tziritas, Georgios ;
Grinias, Elias ;
Khened, Mahendra ;
Kollerathu, Varghese Alex ;
Krishnamurthi, Ganapathy ;
Rohe, Marc-Michel ;
Pennec, Xavier ;
Sermesant, Maxime ;
Isensee, Fabian ;
Jaeger, Paul ;
Maier-Hein, Klaus H. ;
Full, Peter M. ;
Wolf, Ivo ;
Engelhardt, Sandy ;
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Wolterink, Jelmer M. ;
Isgum, Ivana ;
Jang, Yeonggul ;
Hong, Yoonmi ;
Patravali, Jay ;
Jain, Shubham ;
Humbert, Olivier ;
Jodoin, Pierre-Marc .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) :2514-2525
[3]   Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision [J].
Chen, Xiaokang ;
Yuan, Yuhui ;
Zeng, Gang ;
Wang, Jingdong .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :2613-2622
[4]   Not-so-supervised: A survey of semi-supervised, multi-instance, and transfer learning in medical image analysis [J].
Cheplygina, Veronika ;
de Bruijne, Marleen ;
Pluim, Josien P. W. .
MEDICAL IMAGE ANALYSIS, 2019, 54 :280-296
[5]   The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository [J].
Clark, Kenneth ;
Vendt, Bruce ;
Smith, Kirk ;
Freymann, John ;
Kirby, Justin ;
Koppel, Paul ;
Moore, Stephen ;
Phillips, Stanley ;
Maffitt, David ;
Pringle, Michael ;
Tarbox, Lawrence ;
Prior, Fred .
JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) :1045-1057
[6]  
DEMPSTER AP, 1968, J ROY STAT SOC B, V30, P205
[7]   A neural network classifier based on Dempster-Shafer theory [J].
Denoeux, T .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2000, 30 (02) :131-150
[8]   EFNet: evidence fusion network for tumor segmentation from PET-CT volumes [J].
Diao, Zhaoshuo ;
Jiang, Huiyan ;
Han, Xian-Hua ;
Yao, Yu-Dong ;
Shi, Tianyu .
PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (20)
[9]   UCC: Uncertainty guided Cross-head Co-training for Semi-Supervised Semantic Segmentation [J].
Fan, Jiashuo ;
Gao, Bin ;
Jin, Huan ;
Jiang, Lihui .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, :9937-9946
[10]   CPFNet: Context Pyramid Fusion Network for Medical Image Segmentation [J].
Feng, Shuanglang ;
Zhao, Heming ;
Shi, Fei ;
Cheng, Xuena ;
Wang, Meng ;
Ma, Yuhui ;
Xiang, Dehui ;
Zhu, Weifang ;
Chen, Xinjian .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (10) :3008-3018