Realization of Hilbert Space Fragmentation and Fracton Dynamics in Two Dimensions

被引:3
作者
Will, Melissa [1 ,2 ]
Moessner, Roderich [3 ]
Pollmann, Frank [1 ,2 ]
机构
[1] Tech Univ Munich, TUM Sch Nat Sci, Phys Dept, D-85748 Garching, Germany
[2] Munich Ctr Quantum Sci & Technol MCQST, Schellingstr 4, D-80799 Munich, Germany
[3] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
基金
欧洲研究理事会;
关键词
MANY-BODY LOCALIZATION; STATISTICAL-MECHANICS; QUANTUM; THERMALIZATION; CHAOS; ATOMS;
D O I
10.1103/PhysRevLett.133.196301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose the strongly tilted Bose-Hubbard model as a natural platform to explore Hilbert-space fragmentation (HSF) and fracton dynamics in two dimensions in a setup and regime readily accessible in optical lattice experiments. Using a perturbative ansatz, we find HSF when the model is tuned to the resonant limit of on-site interaction and tilted potential. First, we investigate the quench dynamics of this system and observe numerically that the relaxation dynamics strongly depends on the chosen initial state- one of the key signatures of HSF. Second, we identify fractonic excitations with restricted mobility leading to anomalous transport properties. Specifically, we find excitations that show one-dimensional diffusion (z = 1/2) as well as excitations that show subdiffusive behavior in two dimensions (z = 3/4). Using a cellular automaton, we analyze their dynamics and compare it to an effective hydrodynamic description.
引用
收藏
页数:6
相关论文
共 37 条
[1]   Colloquium: Many-body localization, thermalization, and entanglement [J].
Abanin, Dmitry A. ;
Altman, Ehud ;
Bloch, Immanuel ;
Serbyn, Maksym .
REVIEWS OF MODERN PHYSICS, 2019, 91 (02)
[2]  
Adler D, 2024, Arxiv, DOI arXiv:2404.14896
[3]   Universal Dynamics and Renormalization in Many-Body-Localized Systems [J].
Altman, Ehud ;
Vosk, Ronen .
ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 6, 2015, 6 :383-409
[4]   A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice [J].
Bakr, Waseem S. ;
Gillen, Jonathon I. ;
Peng, Amy ;
Foelling, Simon ;
Greiner, Markus .
NATURE, 2009, 462 (7269) :74-U80
[5]   Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states [J].
Basko, DM ;
Aleiner, IL ;
Altshuler, BL .
ANNALS OF PHYSICS, 2006, 321 (05) :1126-1205
[6]   Quantum glassiness in strongly correlated clean systems: An example of topological overprotection [J].
Chamon, C .
PHYSICAL REVIEW LETTERS, 2005, 94 (04)
[7]   From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics [J].
D'Alessio, Luca ;
Kafri, Yariv ;
Polkovnikov, Anatoli ;
Rigol, Marcos .
ADVANCES IN PHYSICS, 2016, 65 (03) :239-362
[8]   QUANTUM STATISTICAL-MECHANICS IN A CLOSED SYSTEM [J].
DEUTSCH, JM .
PHYSICAL REVIEW A, 1991, 43 (04) :2046-2049
[9]   Anomalous Diffusion in Dipole- and Higher-Moment-Conserving Systems [J].
Feldmeier, Johannes ;
Sala, Pablo ;
De Tomasi, Giuseppe ;
Pollmann, Frank ;
Knap, Michael .
PHYSICAL REVIEW LETTERS, 2020, 125 (24)
[10]   Fracton hydrodynamics [J].
Gromov, Andrey ;
Lucas, Andrew ;
Nandkishore, Rahul M. .
PHYSICAL REVIEW RESEARCH, 2020, 2 (03)