A review of charge excitation triboelectric nanogenerator performance enhancement and related applications

被引:1
|
作者
Zhu, Xiaopeng [1 ]
Hao, Yijun [1 ]
Yang, Jiayi [1 ]
Su, Wei [1 ]
Zhang, Hongke [1 ]
Qin, Yong [2 ]
Zhang, Chuguo [1 ]
Li, Xiuhan [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Elect & Informat Engn, Beijing 100044, Peoples R China
[2] Beijing Jiaotong Univ, State Key Lab Rail Traff Control & Safety, Beijing 100044, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Triboelectric nanogenerator; Energy harvesting; Charge excitation; Charge density; CONTACT ELECTRIFICATION; ENERGY; DENSITY;
D O I
10.1016/j.apmt.2024.102492
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The development of advanced technologies that can efficiently gather energy from the environment has a significant impact on the progress of the internet of things field. Based on the characteristics of simple structure, high economy, and low frequency efficiency, triboelectric nanogenerator (TENG) is recognized a novel technology that can effectively capturing various forms of Sustainable energy from the environment. Charge excitation technology, as a multiplier to improve the output performance of TENG, plays a crucial role in promoting the large-scale application of TENG. This article systematically and comprehensively reviews the latest research progress on TENG charge excitation technology in recent years. Firstly, a detailed overview of TENG's charge excitation technologies with the self-excitation and external excitation was provided based on relevant working principles and the most representative related research works were introduced in detail. Besides, relied on structural composition and application requirements, the latest research progress of TENG charge excitation technology is classified and summarized in a more detailed manner from six directions: triboelectric materials, circuits, structures, blue energy, human motion-driven and other forms of surrounding energy, self-driving sensing. Finally, an overview was given of the different problems and challenges currently faced by TENG charge excitation technology, and corresponding prospects were made for future technical research and development directions in this research field.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Triboelectric Nanogenerator as a Probe for Measuring the Charge Transfer between Liquid and Solid Surfaces
    Zhang, Jinyang
    Lin, Shiquan
    Zheng, Mingli
    Wang, Zhong Lin
    ACS NANO, 2021, 15 (09) : 14830 - 14837
  • [32] High-Performance and Humidity-Resistant Direct-Current Triboelectric Nanogenerator by Coupling Method Combing Charge Excitation and Phase Shift
    Wang, Jianlong
    Li, Hengyu
    Zhao, Da
    Gao, Qi
    Cheng, Xiaojun
    Wen, Jianming
    Wang, Zhong Lin
    Cheng, Tinghai
    ADVANCED MATERIALS TECHNOLOGIES, 2023, 8 (18):
  • [33] The water droplet with huge charge density excited by triboelectric nanogenerator for water sterilization
    Luo, Hongchun
    Gu, Guangqin
    Shang, Wanyu
    Zhang, Wenhe
    Wang, Tingyu
    Cui, Peng
    Zhang, Bao
    Guo, Junmeng
    Cheng, Gang
    Du, Zuliang
    NANOTECHNOLOGY, 2021, 32 (41)
  • [34] High Quality Electret Based Triboelectric Nanogenerator for Boosted and Reliable Electrical Output Performance
    Yun, Yeongcheol
    La, Moonwoo
    Cho, Sumin
    Jang, Sunmin
    Choi, Jun Hyuk
    Ra, Yoonsang
    Kam, Dongik
    Park, Sung Jea
    Choi, Dongwhi
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY, 2021, 8 (01) : 125 - 137
  • [35] High performance temperature difference triboelectric nanogenerator
    Cheng, Bolang
    Xu, Qi
    Ding, Yaqin
    Bai, Suo
    Jia, Xiaofeng
    Yu, Yangdianchen
    Wen, Juan
    Qin, Yong
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [36] Boosting output performance of sliding mode triboelectric nanogenerator by charge space-accumulation effect
    He, Wencong
    Liu, Wenlin
    Chen, Jie
    Wang, Zhao
    Liu, Yike
    Pu, Xianjie
    Yang, Hongmei
    Tang, Qian
    Yang, Huake
    Guo, Hengyu
    Hu, Chenguo
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [37] Superior Charge Density of Triboelectric Nanogenerator via Trap Engineering
    Liu, Xiaoru
    Zhao, Zhihao
    Zhang, Baofeng
    Hu, Yuexiao
    Qiao, Wenyan
    Gao, Yikui
    Wang, Jing
    Guo, Ziting
    Zhou, Linglin
    Wang, Zhong Lin
    Wang, Jie
    ADVANCED FUNCTIONAL MATERIALS, 2024,
  • [38] Pre-Biased Synchronous Charge Extraction for Triboelectric Nanogenerator
    Pathak, Madhav
    Kumar, Ratnesh
    2019 IEEE SENSORS, 2019,
  • [39] Charge storage coating based triboelectric nanogenerator and its applications in self-powered anticorrosion and antifouling
    Zhang, Zhitao
    Liu, Yupeng
    Feng, Min
    Wang, Nannan
    Du, Changhe
    Peng, Shu
    Guo, Yufei
    Liu, Yongjian
    Liu, Ying
    Wang, Daoai
    FRONTIERS OF MATERIALS SCIENCE, 2023, 17 (01)
  • [40] Triboelectric nanogenerator for healthcare and biomedical applications
    Khandelwal, Gaurav
    Raj, Nirmal Prashanth Maria Joseph
    Kim, Sang-Jae
    NANO TODAY, 2020, 33