A review of charge excitation triboelectric nanogenerator performance enhancement and related applications

被引:1
|
作者
Zhu, Xiaopeng [1 ]
Hao, Yijun [1 ]
Yang, Jiayi [1 ]
Su, Wei [1 ]
Zhang, Hongke [1 ]
Qin, Yong [2 ]
Zhang, Chuguo [1 ]
Li, Xiuhan [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Elect & Informat Engn, Beijing 100044, Peoples R China
[2] Beijing Jiaotong Univ, State Key Lab Rail Traff Control & Safety, Beijing 100044, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Triboelectric nanogenerator; Energy harvesting; Charge excitation; Charge density; CONTACT ELECTRIFICATION; ENERGY; DENSITY;
D O I
10.1016/j.apmt.2024.102492
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The development of advanced technologies that can efficiently gather energy from the environment has a significant impact on the progress of the internet of things field. Based on the characteristics of simple structure, high economy, and low frequency efficiency, triboelectric nanogenerator (TENG) is recognized a novel technology that can effectively capturing various forms of Sustainable energy from the environment. Charge excitation technology, as a multiplier to improve the output performance of TENG, plays a crucial role in promoting the large-scale application of TENG. This article systematically and comprehensively reviews the latest research progress on TENG charge excitation technology in recent years. Firstly, a detailed overview of TENG's charge excitation technologies with the self-excitation and external excitation was provided based on relevant working principles and the most representative related research works were introduced in detail. Besides, relied on structural composition and application requirements, the latest research progress of TENG charge excitation technology is classified and summarized in a more detailed manner from six directions: triboelectric materials, circuits, structures, blue energy, human motion-driven and other forms of surrounding energy, self-driving sensing. Finally, an overview was given of the different problems and challenges currently faced by TENG charge excitation technology, and corresponding prospects were made for future technical research and development directions in this research field.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Hybrid nanogenerator and enhancement of water-solid contact electrification using triboelectric charge supplier
    Wijewardhana, K. Rohana
    Shen, Tian-Zi
    Jayaweera, E. N.
    Shahzad, Amir
    Song, Jang-Kun
    NANO ENERGY, 2018, 52 : 402 - 407
  • [22] A brief review of nonlinear triboelectric nanogenerator
    Tan, Dongguo
    Wang, Kai
    Zhou, Jiaxi
    Peng, Jian
    Wang, Qiang
    INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2024, 12 (06) : 2072 - 2092
  • [23] Penciling a triboelectric nanogenerator on paper for autonomous power MEMS applications
    Zhang, Xiao-Sheng
    Su, Meng
    Brugger, Juergen
    Kim, Beomjoon
    NANO ENERGY, 2017, 33 : 393 - 401
  • [24] High Efficiency Power Management and Charge Boosting Strategy for a Triboelectric Nanogenerator
    Cheng, Xiaoliang
    Miao, Liming
    Song, Yu
    Su, Zongming
    Chen, Haotian
    Chen, Xuexian
    Zhang, Jinxin
    Zhang, Haixia
    NANO ENERGY, 2017, 38 : 448 - 456
  • [25] Charge Dispersion Strategy for High-Performance and Rain-Proof Triboelectric Nanogenerator
    Sun, Qizeng
    Ren, Guozhang
    He, Shunhao
    Tang, Biao
    Li, Yijia
    Wei, Yuewen
    Shi, Xuewen
    Tan, Shenxing
    Yan, Ren
    Wang, Kaili
    Yu, Liuyingzi
    Wang, Junjie
    Gao, Kun
    Zhu, Chengcheng
    Song, Yaxin
    Gong, Zhongyan
    Lu, Gang
    Huang, Wei
    Yu, Hai-Dong
    ADVANCED MATERIALS, 2024, 36 (08)
  • [26] Charge Generation and Enhancement of Key Components of Triboelectric Nanogenerators: A Review
    Wang, Jian
    Xu, Shuyan
    Hu, Chenguo
    ADVANCED MATERIALS, 2024, 36 (50)
  • [27] Performance enhancement of triboelectric nanogenerator by embedding tea-leaf powder in waste polystyrene
    Sanyal, Dipanjan
    Chowdhury, Pritam
    Dey, Sovan
    Mandal, Arindam
    Saha, Mainak
    Nawaz, Sk Masum
    Mallik, Abhijit
    NANO ENERGY, 2024, 132
  • [28] Photoinduced triboelectric polarity reversal and enhancement of a new metal/semiconductor triboelectric nanogenerator
    Han, Juanjuan
    Yang, Xiude
    Liao, Liping
    Zhou, Guangdong
    Wang, Gang
    Xu, Cunyun
    Hu, Wei
    Debora, Mbeng Elisabeth Reine
    Song, Qunliang
    NANO ENERGY, 2019, 58 : 331 - 337
  • [29] Hexadecane-containing sandwich structure based triboelectric nanogenerator with remarkable performance enhancement
    Wang, Kaiqiang
    Li, Jinjin
    Li, Jianfeng
    Wu, Caiyang
    Yi, Shuang
    Liu, Yanfei
    Luo, Jianbin
    NANO ENERGY, 2021, 87
  • [30] An Ultrarobust High-Performance Triboelectric Nanogenerator Based on Charge Replenishment
    Guo, Hengyu
    Chen, Jun
    Yeh, Min-Hsin
    Fan, Xing
    Wen, Zhen
    Li, Zhaoling
    Hu, Chenguo
    Wang, Zhong Lin
    ACS NANO, 2015, 9 (05) : 5577 - 5584