Multi-view dreaming: multi-view world model with contrastive learning

被引:0
|
作者
Kinose A. [1 ]
Okumura R. [2 ]
Okada M. [2 ]
Taniguchi T. [2 ,3 ]
机构
[1] Research and Development Center, Panasonic Connect Co. Ltd., Tokyo
[2] Digital and AI Technology Center, Technology Division, Panasonic Holdings Co, Osaka, Kadoma
[3] College of Information Science and Engineering, Ritsumeikan University, Kusatsu
关键词
multimodal; reinforcement learning; robotic manipulation; sensor integration; World models;
D O I
10.1080/01691864.2023.2264363
中图分类号
学科分类号
摘要
In this paper, we propose Multi-View Dreaming, a novel reinforcement learning agent for integrated recognition and control from multi-view observations by extending Dreaming. Most current reinforcement learning method assumes a single-view observation space, and this imposes limitations on the observed data, such as lack of spatial information and occlusions. This makes obtaining ideal observational information from the environment difficult and is a bottleneck for real-world robotics applications. In this paper, we use contrastive learning to train a shared latent space between different viewpoints and show how the Products of Experts approach can be used to integrate and control the probability distributions of latent states for multiple viewpoints. We also propose Multi-View DreamingV2, a variant of Multi-View Dreaming that uses a categorical distribution to model the latent state instead of the Gaussian distribution. Experiments show that the proposed method outperforms simple extensions of existing methods in a realistic robot control task. © 2023 Informa UK Limited, trading as Taylor & Francis Group and The Robotics Society of Japan.
引用
收藏
页码:1212 / 1220
页数:8
相关论文
共 50 条
  • [31] Multi-view graph contrastive learning for social recommendation
    Chen, Rui
    Chen, Jialu
    Gan, Xianghua
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [32] Contrastive and attentive graph learning for multi-view clustering
    Wang, Ru
    Li, Lin
    Tao, Xiaohui
    Wang, Peipei
    Liu, Peiyu
    Information Processing and Management, 2022, 59 (04):
  • [33] Multi-View Guided Multi-View Stereo
    Poggi, Matteo
    Conti, Andrea
    Mattoccia, Stefano
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 8391 - 8398
  • [34] Multi-level Feature Learning for Contrastive Multi-view Clustering
    Xu, Jie
    Tang, Huayi
    Ren, Yazhou
    Peng, Liang
    Zhu, Xiaofeng
    He, Lifang
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 16030 - 16039
  • [35] Knowledge-Aware Multi-view Contrastive Learning for Recommendation
    Xie, Xiang
    Xie, Zhenping
    Liu, Yuan
    Wang, Jia
    Zhan, Qianyi
    NEURAL PROCESSING LETTERS, 2025, 57 (02)
  • [36] Multi-view Hypergraph Contrastive Policy Learning for Conversational Recommendation
    Zhao, Sen
    Wei, Wei
    Mao, Xian-Ling
    Zhu, Shuai
    Yang, Minghui
    Wen, Zujie
    Chen, Dangyang
    Zhu, Feida
    PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, 2023, : 654 - 664
  • [37] FACTORIZED CONTRASTIVE LEARNING: Going Beyond Multi-view Redundancy
    Liang, Paul Pu
    Deng, Zihao
    Ma, Martin Q.
    Zou, James
    Morency, Louis-Philippe
    Salakhutdinov, Ruslan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [38] Enhancing Multi-view Contrastive Learning for Graph Anomaly Detection
    Lu, Qingcheng
    Wu, Nannan
    Zhao, Yiming
    Wang, Wenjun
    Zu, Quannan
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, PT VI, DASFAA 2024, 2024, 14855 : 236 - 251
  • [39] Attribute mining multi-view contrastive learning network for recommendation
    Yuan, Xu
    Wu, Huinan
    Wang, Longfei
    Bu, Xiya
    Gao, Zhengnan
    Ma, Ruixin
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 253
  • [40] Global and local combined contrastive learning for multi-view clustering
    Gu, Wenjie
    Zhu, Changming
    MULTIMEDIA SYSTEMS, 2024, 30 (05)