共 49 条
Two-Dimensional ZrS2 and HfS2 for Making Sub-10 nm High-Performance P-Type Transistors
被引:3
|作者:
Hu, Xuemin
[1
,2
]
Huang, Yu
[3
]
Qu, Hengze
[2
]
Ye, Yuanfeng
[1
]
Zhang, Shengli
[2
]
机构:
[1] Jinling Inst Technol, Sch Mat Engn, Nanjing 211169, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Mat Sci & Engn, MIIT Key Lab Adv Display Mat & Devices, Nanjing 210094, Peoples R China
[3] Univ Chinese Acad Sci, Hangzhou Inst Adv Study, Hangzhou 310024, Peoples R China
来源:
JOURNAL OF PHYSICAL CHEMISTRY LETTERS
|
2024年
/
15卷
/
44期
基金:
中国国家自然科学基金;
关键词:
FIELD-EFFECT TRANSISTORS;
MOS2;
TRANSISTORS;
LAYER;
D O I:
10.1021/acs.jpclett.4c02694
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Two-dimensional (2D) transition metal dichalcogenide (TMDC) semiconductors have been recognized as reliable candidates for future sub-10 nm physical gate length field-effect transistors (FETs). However, the device performance of 2D P-type devices is far inferior to that of N-type devices, which seriously hinders the development of complementary metal-oxide-semiconductor (CMOS) integrated circuits. Herein, we presented that two new 2D TMDC channel materials, ZrS2 and HfS2, can realize high-performance P-type MOSFETs through first-principles quantum transport simulations. Different from the 2D MoS2 and WSe2, the continuous in-plane p-orbitals at the valence band edge of 2D ZrS2 and HfS2 lead to a small hole effective mass of 0.24 m0. As a result, 2D ZrS2 and HfS2 P-type MOSFETs with 10 nm gate length possess an on-state current (I on) as high as 2000 mu A/mu m. Moreover, even when the gate length shrinks to 5 nm, the I on can also reach similar to 1500 mu A/mu m with the energy delay product ranging from 3 x 10-30 to 1 x 10-29 Js/mu m, which are better than many other 2D P-type MOSFETs like MoS2 and WSe2. Our work demonstrates that 2D ZrS2 and HfS2 are competitive channel materials for constructing future sub-10 nm P-type high-performance FETs.
引用
收藏
页码:11035 / 11041
页数:7
相关论文