Anomalous dielectric behavior of poled K0.5Bi0.5TiO3 ceramics

被引:9
作者
Badole M. [1 ]
Dwivedi S. [1 ]
Kumar S. [1 ]
机构
[1] Department of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol
关键词
Dielectric properties; Perovskites; Sintering; X-ray method;
D O I
10.1016/j.ceramint.2021.12.336
中图分类号
学科分类号
摘要
Perovskite K0.5Bi0.5TiO3 (KBT) ceramics were prepared via the solid-state synthesis method and the structural, dielectric, and piezoelectric properties in unpoled & poled states were analyzed to resolve the reported discrepancies in this material. The Rietveld refinement of room-temperature x-ray diffraction data of the unpoled KBT shows the coexistence of tetragonal (P4mm) & cubic (Pm3‾m) phases. However, two tetragonal phases (P4mm) with different c/a ratios were suggested in poled KBT, signifying the external electric field effect on structural transformation. These structural changes were further corroborated by the appearance of an additional anomaly in the temperature-dependent dielectric permittivity of poled KBT ceramic. The possible mechanisms responsible for electric field-dependent phase transformation and anomalous dielectric behavior of KBT ceramics are discussed. The temperatures of normal to relaxor ferroelectric transition (TF-R) and depolarization (Td) were estimated to be ∼280 °C and 320 °C, respectively. The higher value of Td than TF-R implies the nonergodic relaxor state in KBT ceramic. Dielectric and piezoelectric measurements performed on relaxor ferroelectric BiAlO3 modified KBT ceramics further strengthen the proposed mechanisms responsible for anomalous dielectric behavior in poled KBT ceramics. © 2021 Elsevier Ltd and Techna Group S.r.l.
引用
收藏
页码:11166 / 11172
页数:6
相关论文
共 40 条
[1]  
Panda P.K., Review: environmental friendly lead-free piezoelectric materials, J. Mater. Sci., 44, pp. 5049-5062, (2009)
[2]  
Wei Y., Zhang N., Xu G., Jin C., Hu L., Gao L., Jian Z., Zhu W., Low-temperature dielectric anomaly in Bi<sub>0.5</sub>K<sub>0.5</sub>TiO<sub>3</sub>, Appl. Phys. A, 125, (2019)
[3]  
Guo J., Zhu M., Li L., Qing T., Wang C., Liu L., Zheng M., Hou Y., Normal-relaxor ferroelectric modulation of a-site complex perovskite ferroelectric (K<sub>1/2</sub>Bi<sub>1/2</sub>)TiO<sub>3</sub> by post-annealing, J. Appl. Phys., 121, (2017)
[4]  
Wu J., Perovskite lead-free piezoelectric ceramics, J. Appl. Phys., 127, (2020)
[5]  
Wei H., Wang H., Xia Y., Cui D., Shi Y., Dong M., Liu C., Ding T., Zhang J.-X., Ma Y., Wang N., Wang Z., Sun Y., Wei R., Guo Z., An overview of lead-free piezoelectric materials and devices, J. Mater. Chem. C, 6, (2018)
[6]  
Fan P., Liu K., Ma W., Tan H., Zhang Q., Zhang L., Zhou C., Salamon D., Zhang S.-T., Zhang Y., Nan B., Zhang H., Progress and perspective of high strain NBT-based lead-free piezoceramics and multilayer actuators, J. Materiomics, 7, pp. 508-544, (2021)
[7]  
Wu J., Xiao D., Zhu J., Potassium–sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries, Chem. Rev., 115, pp. 2559-2595, (2015)
[8]  
Chen C., Chen P., Chu B., Effect of reduction produced defects on the dielectric relaxation and electrical conduction of Na<sub>0.5</sub>Bi<sub>0.5</sub>TiO<sub>3</sub>-based ceramics, J. Appl. Phys., 129, (2021)
[9]  
Sun J., Ahmed R., Wang G.J., Wang S.T., Wang J., Suhaib S.A., Xie Y.M., Bi H., Wang C.C., Colossal dielectric behavior and dielectric anomalies in Sr<sub>2</sub>TiCrO<sub>6</sub> ceramics, J. Mater. Sci., 54, pp. 6323-6331, (2019)
[10]  
Murray C., Thompson S., Feteira A., Al-Aaraji M., Hall D., Effects of quenching on phase transformations and ferroelectric properties of 0.35BCZT-0.65KBT ceramics, J. Eur. Ceram. Soc., 39, pp. 4070-4084, (2020)