Dual-Metal Sites Drive Tandem Electrocatalytic CO2 to C2+ Products

被引:8
|
作者
Xie, Guixian [1 ]
Guo, Weiwei [1 ]
Fang, Zijian [1 ]
Duan, Zongxia [1 ]
Lang, Xianzhen [1 ]
Liu, Doudou [1 ]
Mei, Guoliang [1 ]
Zhai, Yanling [1 ]
Sun, Xiaofu [3 ]
Lu, Xiaoquan [1 ,2 ]
机构
[1] Qingdao Univ, Inst Mol Metrol, Coll Chem & Chem Engn, Qingdao 266071, Peoples R China
[2] Northwest Normal Univ, Coll Chem & Chem Engn, Key Lab Bioelectrochem & Environm Anal Gansu Prov, Lanzhou 730070, Peoples R China
[3] Chinese Acad Sci, Inst Chem, Ctr Carbon Neutral Chem, Key Lab Colloid & Interface & Thermodynam,Beijing, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
carbon dioxide; electrocatalysis; dual-metal sites; alcohol; C2+ products; CARBON-DIOXIDE; ELECTROREDUCTION; CONVERSION; CATALYST; SELECTIVITY; ELECTRODES; REDUCTION;
D O I
10.1002/anie.202412568
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electrochemical conversion of CO2 into valuable chemicals is a promising route for renowable energy storage and the mitigation of greenhouse gas emission, and production of multicarbon (C2+) products is highly desired. Here, we report a 1.4 %Pd-Cu@CuPz(2) comprising of dispersive CuOx and PdO dual nanoclusters embedded in the MOF CuPz(2) (Pz=Pyrazole), which achieves a high C2+ Faradaic efficiency (FEC2+) of 81.9 % and C2+ alcohol FE of 47.5 % with remarkable stability when using 0.1 M KCl aqueous solution as electrolyte in a typical H-cell. Particularly, the FE of alcohol is obviously improved on 1.4 %Pd-Cu@CuPz(2) compared to Cu@CuPz(2). Theoretical calculations have revealed that the enhanced interfacial electron transfer facilitates the adsorption of *CO intermediate and *CO-*CO dimerization on the Cu-Pd dual sites bridged by Cu nodes of CuPz(2). Additionally, the oxophilicity of Pd can stabilize the key intermediate *CH2CHO and promote subsequent proton-coupled electron transfer more efficiently, confirming that the formation pathway is skew towards *C2H5OH. Consequently, the Cu-Pd dual sites play a synergistic tandem role in cooperatively improving the selectivity of alcohol and accelerating reductive conversion of CO2 to C2+.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Silver modified copper foam electrodes for enhanced reduction of CO2 to C2+ products
    Wang, Chong
    Wang, Chengdeng
    Xiong, Zhihao
    Wang, Jiashuai
    Zhang, Wenyuan
    Shi, Haofeng
    Wang, Donghua
    Gu, Yousong
    Bai, Zhiming
    Gao, Yan
    Yan, Xiaoqin
    MATERIALS ADVANCES, 2022, 3 (12): : 4964 - 4972
  • [42] Lattice Strain Engineering Boosts CO2 Electroreduction to C2+ Products
    Jiao, Jiapeng
    Kang, Xinchen
    Yang, Jiahao
    Jia, Shuaiqiang
    Chen, Xiao
    Peng, Yaguang
    Chen, Chunjun
    Xing, Xueqing
    Chen, Zhongjun
    He, Mingyuan
    Wu, Haihong
    Han, Buxing
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (38)
  • [43] Metal-Based Aerogels Catalysts for Electrocatalytic CO2 Reduction
    Wang, Guangtao
    Li, Xiang
    Yang, Xiaohan
    Liu, Li-Xia
    Cai, Yanming
    Wu, Yajun
    Wang, Shengyan
    Li, Huan
    Zhou, Yuanzhen
    Wang, Yuanyuan
    Zhou, Yang
    CHEMISTRY-A EUROPEAN JOURNAL, 2022, 28 (64)
  • [44] Efficient Electrocatalytic CO2 Reduction to C2+ Alcohols at Defect-Site-Rich Cu Surface
    Gu, Zhengxiang
    Shen, Hao
    Chen, Zheng
    Yang, Yaoyue
    Yang, Chao
    Ji, Yali
    Wang, Yuhang
    Zhu, Chan
    Liu, Junlang
    Li, Jun
    Sham, Tsun-Kong
    Xu, Xin
    Zheng, Gengfeng
    JOULE, 2021, 5 (02) : 429 - 440
  • [45] Dual-Anion-Stabilized Cuδ+ Sites in Cu2(OH)2CO3 for High C2+ Selectivity in the CO2 Electroreduction Reaction
    He, Xin
    Wang, Min
    Wei, Zixuan
    Wang, Yang
    Wang, Jie
    Zang, Haojie
    Zhang, Lingxia
    CHEMSUSCHEM, 2024, 17 (24)
  • [46] Crystal facet effect induced by different pretreatment of Cu2O nanowire electrode for enhanced electrochemical CO2 reduction to C2+ products
    Fu, Yang
    Xie, Qixian
    Wu, Linxiao
    Luo, Jingshan
    CHINESE JOURNAL OF CATALYSIS, 2022, 43 (04) : 1066 - 1073
  • [47] Progress in the design of silver-based catalysts for electrocatalytic and photocatalytic CO2 reduction to CO
    Wei, Shuoming
    Deng, Yang
    Xu, Xinru
    Jiang, Xiao
    Liu, Bingsi
    Zhao, Chao
    Zhang, Zhen
    APPLIED CATALYSIS O: OPEN, 2024, 188
  • [48] Highly Efficient Electrocatalytic CO2 Reduction to C2+ Products on a Poly(ionic liquid)-Based Cu0-CuI Tandem Catalyst
    Duan, Guo-Yi
    Li, Xiao-Qiang
    Ding, Guang-Rong
    Han, Li-Jun
    Xu, Bao-Hua
    Zhang, Suo-Jiang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (09)
  • [49] Emerging dual-atomic-site catalysts for electrocatalytic CO2 reduction
    Qiu, Na
    Li, Junjun
    Wang, Haiqing
    Zhang, Zhicheng
    SCIENCE CHINA-MATERIALS, 2022, 65 (12) : 3302 - 3323
  • [50] Multifunctional Photoelectroactive Platform for CO2 Reduction toward C2+ Products-Programmable Selectivity with a Bioinspired Polymer Coating
    Dekanovsky, Lukas
    Plutnar, Jan
    Sturala, Jiri
    Brus, Jiri
    Kosina, Jiri
    Azadmanjiri, Jalal
    Sedmidubsky, David
    Sofer, Zdenek
    Khezri, Bahareh
    ACS CATALYSIS, 2022, 12 (02) : 1558 - 1571