Dual-Metal Sites Drive Tandem Electrocatalytic CO2 to C2+ Products

被引:8
|
作者
Xie, Guixian [1 ]
Guo, Weiwei [1 ]
Fang, Zijian [1 ]
Duan, Zongxia [1 ]
Lang, Xianzhen [1 ]
Liu, Doudou [1 ]
Mei, Guoliang [1 ]
Zhai, Yanling [1 ]
Sun, Xiaofu [3 ]
Lu, Xiaoquan [1 ,2 ]
机构
[1] Qingdao Univ, Inst Mol Metrol, Coll Chem & Chem Engn, Qingdao 266071, Peoples R China
[2] Northwest Normal Univ, Coll Chem & Chem Engn, Key Lab Bioelectrochem & Environm Anal Gansu Prov, Lanzhou 730070, Peoples R China
[3] Chinese Acad Sci, Inst Chem, Ctr Carbon Neutral Chem, Key Lab Colloid & Interface & Thermodynam,Beijing, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
carbon dioxide; electrocatalysis; dual-metal sites; alcohol; C2+ products; CARBON-DIOXIDE; ELECTROREDUCTION; CONVERSION; CATALYST; SELECTIVITY; ELECTRODES; REDUCTION;
D O I
10.1002/anie.202412568
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electrochemical conversion of CO2 into valuable chemicals is a promising route for renowable energy storage and the mitigation of greenhouse gas emission, and production of multicarbon (C2+) products is highly desired. Here, we report a 1.4 %Pd-Cu@CuPz(2) comprising of dispersive CuOx and PdO dual nanoclusters embedded in the MOF CuPz(2) (Pz=Pyrazole), which achieves a high C2+ Faradaic efficiency (FEC2+) of 81.9 % and C2+ alcohol FE of 47.5 % with remarkable stability when using 0.1 M KCl aqueous solution as electrolyte in a typical H-cell. Particularly, the FE of alcohol is obviously improved on 1.4 %Pd-Cu@CuPz(2) compared to Cu@CuPz(2). Theoretical calculations have revealed that the enhanced interfacial electron transfer facilitates the adsorption of *CO intermediate and *CO-*CO dimerization on the Cu-Pd dual sites bridged by Cu nodes of CuPz(2). Additionally, the oxophilicity of Pd can stabilize the key intermediate *CH2CHO and promote subsequent proton-coupled electron transfer more efficiently, confirming that the formation pathway is skew towards *C2H5OH. Consequently, the Cu-Pd dual sites play a synergistic tandem role in cooperatively improving the selectivity of alcohol and accelerating reductive conversion of CO2 to C2+.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Unraveling the Influence of Shell Thickness in Organic Functionalized Cu2O Nanoparticles on C2+ Products Distribution in Electrocatalytic CO2 Reduction
    Hu, Jiajun
    Osella, Silvio
    Albero, Josep
    Garcia, Hermenegildo
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (44)
  • [22] Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst
    Morales-Guio, Carlos G.
    Cave, Etosha R.
    Nitopi, Stephanie A.
    Feaster, Jeremy T.
    Wang, Lei
    Kuhl, Kendra P.
    Jackson, Ariel
    Johnson, Natalie C.
    Abram, David N.
    Hatsukade, Toru
    Hahn, Christopher
    Jaramillo, Thomas F.
    NATURE CATALYSIS, 2018, 1 (10): : 764 - 771
  • [23] Towards understanding of CO2 electroreduction to C2+ products on copper-based catalysts
    Liu, Tianfu
    Sang, Jiaqi
    Li, Hefei
    Wei, Pengfei
    Zang, Yipeng
    Wang, Guoxiong
    BATTERY ENERGY, 2022, 1 (04):
  • [24] Graphdiyene enables ultrafine Cu nanoparticles to selectively reduce CO2 to C2+ products
    Chang, Yong-Bin
    Zhang, Chao
    Lu, Xiu-Li
    Zhang, Wen
    Lu, Tong-Bu
    NANO RESEARCH, 2022, 15 (01) : 195 - 201
  • [25] Reprint of "Electrocatalytic CO2 reduction to C2+ products on Cu and CuxZny electrodes: Effects of chemical composition and surface morphology"
    da Silva, Alisson H. M.
    Raaijman, Stefan J.
    Santana, Cassia S.
    Assaf, Jose M.
    Gomes, Janaina F.
    Koper, Marc T. M.
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2021, 896
  • [26] C60-Stabilized Cu+ Sites Boost Electrocatalytic Reduction of CO2 to C2+ Products
    Zhao, Bohang
    Chen, Fanpeng
    Cheng, Chuanqi
    Li, Li
    Liu, Cuibo
    Zhang, Bin
    ADVANCED ENERGY MATERIALS, 2023, 13 (19)
  • [27] Identifying the optimal oxidation state of Cu for electrocatalytic reduction of CO2 to C2+ products
    Xu, Liang
    Feng, Jiaqi
    Wu, Limin
    Song, Xinning
    Tan, Xingxing
    Zhang, Libing
    Ma, Xiaodong
    Jia, Shunhan
    Du, Juan
    Chen, Aibing
    Sun, Xiaofu
    Han, Buxing
    GREEN CHEMISTRY, 2023, 25 (04) : 1326 - 1331
  • [28] Recent advances in application of tandem catalyst for electrocatalytic CO2 reduction
    Ma, Jiamin
    Liu, Chunmei
    Bai, Meng
    Fu, Zimei
    Zhao, Peipei
    Gao, Yang
    Zhao, Man
    He, Yingluo
    Xiao, He
    Jia, Jianfeng
    MOLECULAR CATALYSIS, 2023, 551
  • [29] Origin of Metal-Support Interactions for Selective Electrochemical CO2 Reduction into C1 and C2+ Products
    Chen, Heng-Quan
    Zhao, Wanghui
    Wang, Linqin
    Chen, Zhong
    Ye, Wentao
    Zang, Jianyang
    Wang, Tao
    Sun, Licheng
    Yang, Wenxing
    ACS CATALYSIS, 2024, 14 (15): : 11794 - 11802
  • [30] Materials Design for Photocatalytic CO2 Conversion to C2+ Products
    Man, Saira
    Jiang, Wenbin
    Guo, Xuecheng
    Ruzimuradov, Olim
    Mamatkulov, Shavkat
    Low, Jingxiang
    Xiong, Yujie
    CHEMISTRY OF MATERIALS, 2024, 36 (04) : 1793 - 1809