CO2 laser-induced porous carbon attached Bi2O3 as highly efficient catalyst for CO2 electroreduction to formate

被引:4
作者
Zhang, Shipeng [1 ]
Wang, Xiaoshan [2 ]
Song, Dewen [1 ]
Fei, Xiang [3 ]
Wang, Mingwang [1 ]
Wu, Wenting [1 ]
Zhao, Qingshan [1 ]
Zhu, Ruirui [1 ]
Ning, Hui [1 ]
Wu, Mingbo [1 ]
机构
[1] China Univ Petr East China, Inst New Energy, Coll New Energy, State Key Lab Heavy Oil Proc, Qingdao 266580, Shandong, Peoples R China
[2] Qingdao Univ, Coll Phys, Qingdao 266071, Shandong, Peoples R China
[3] Yantai Port Pipeline Transportat Co Ltd, Yantai 264001, Peoples R China
基金
中国国家自然科学基金;
关键词
CO; 2; electroreduction; Laser etching; Bismuth oxide; Formic acid; ELECTROCHEMICAL REDUCTION; METALLIC COMPONENTS; TECHNOLOGY; DIOXIDE;
D O I
10.1016/j.carbon.2024.119385
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrochemical reduction of carbon dioxide to high-value products is a promising strategy to achieve carbon neutrality, but is hindered by lacking of effective catalysts. Herein, a laser-induced mesoporous carbon (LPC) is quickly prepared by CO2 laser etching commercial polyimide film (PI) without any templates, which proved an artificial support for Bi2O3. The well-defined porous structure and unique nitrogen doping structure synergistically improve the activity and stability of Bi2O3@LPC in catalyzing CO2 electroreduction to formate. The as-made Bi2O3@LPC composite delivers a high faradaic efficiency of 98 % for formate at -150 mA cm- 2. DFT calculations reveal the graphitic N in PLC helps stabilize the oxidized state of bismuth under reduction potentials by forming a special N-O-Bi structure. This work provides a new idea for the designing of metal/carbon composite electrocatalysts with nitrogen doped carbon materials as supports.
引用
收藏
页数:9
相关论文
共 55 条
[1]   Insertion of MXene-Based Materials into Cu-Pd 3D Aerogels for Electroreduction of CO2 to Formate [J].
Abdinejad, Maryam ;
Subramanian, Siddhartha ;
Motlagh, Mozhgan Khorasani ;
Noroozifar, Meissam ;
Duangdangchote, Salatan ;
Neporozhnii, Ihor ;
Ripepi, Davide ;
Pinto, Donato ;
Li, Mengran ;
Tang, Keith ;
Middelkoop, Joost ;
Urakawa, Atsushi ;
Voznyy, Oleksandr ;
Kraatz, Heinz-Bernhard ;
Burdyny, Thomas .
ADVANCED ENERGY MATERIALS, 2023, 13 (19)
[2]   Ceramic components manufacturing by selective laser sintering [J].
Bertrand, Ph. ;
Bayle, F. ;
Combe, C. ;
Goeuriot, P. ;
Smurov, I. .
APPLIED SURFACE SCIENCE, 2007, 254 (04) :989-992
[3]   Laser direct writing of heteroatom-doped porous carbon for high-performance micro-supercapacitors [J].
Cai, Jinguang ;
Lv, Chao ;
Hu, Cun ;
Luo, Junhong ;
Liu, Shuai ;
Song, Jiangfeng ;
Shi, Yan ;
Chen, Changan ;
Zhang, Zhi ;
Ogawa, Sayaka ;
Aoyagi, Eiji ;
Watanabe, Akira .
ENERGY STORAGE MATERIALS, 2020, 25 :404-415
[4]   Additive manufacturing of metallic components - Process, structure and properties [J].
DebRoy, T. ;
Wei, H. L. ;
Zuback, J. S. ;
Mukherjee, T. ;
Elmer, J. W. ;
Milewski, J. O. ;
Beese, A. M. ;
Wilson-Heid, A. ;
De, A. ;
Zhang, W. .
PROGRESS IN MATERIALS SCIENCE, 2018, 92 :112-224
[5]   Bismuth Oxides with Enhanced Bismuth-Oxygen Structure for Efficient Electrochemical Reduction of Carbon Dioxide to Formate [J].
Deng, Peilin ;
Wang, Hongming ;
Qi, Ruijuan ;
Zhu, Jiexin ;
Chen, Shenghua ;
Yang, Fan ;
Zhou, Liang ;
Qi, Kai ;
Liu, Hongfang ;
Xia, Bao Yu .
ACS CATALYSIS, 2020, 10 (01) :743-750
[6]   Dynamic reconstructuring of CuS/SnO2-S for promoting CO2 electroreduction to formate [J].
Dou, Tong ;
He, Jinqing ;
Diao, Shuteng ;
Wang, Yiping ;
Zhao, Xuhui ;
Zhang, Fazhi ;
Lei, Xiaodong .
JOURNAL OF ENERGY CHEMISTRY, 2023, 82 :497-506
[7]   Electroreduction of CO2: Advances in the Continuous Production of Formic Acid and Formate [J].
Fernandez-Caso, Kevin ;
Diaz-Sainz, Guillermo ;
Alvarez-Guerra, Manuel ;
Irabien, Angel .
ACS ENERGY LETTERS, 2023, 8 (04) :1992-2024
[8]   Nanoconfinement effects on CuBi3 alloy catalyst for efficient CO2 electroreduction to formic acid [J].
Fu, Yao ;
Leng, Kangmin ;
Zhuo, Haiou ;
Liu, Wenlong ;
Liu, Lizhe ;
Zhou, Gang ;
Tang, Jiancheng .
JOURNAL OF CO2 UTILIZATION, 2023, 70
[9]   Laser additive manufacturing of metallic components: materials, processes and mechanisms [J].
Gu, D. D. ;
Meiners, W. ;
Wissenbach, K. ;
Poprawe, R. .
INTERNATIONAL MATERIALS REVIEWS, 2012, 57 (03) :133-164
[10]   Additive manufacturing: Technology, applications and research needs [J].
Guo N. ;
Leu M.C. .
Frontiers of Mechanical Engineering, 2013, 8 (3) :215-243