3D object detection for autonomous driving: Methods, models, sensors, data, and challenges

被引:0
|
作者
Ghasemieh A. [1 ]
Kashef R. [1 ]
机构
[1] Department of Electrical, Computer and Biomedical Engineering, Ryerson University, Toronto
来源
Transportation Engineering | 2022年 / 8卷
关键词
3D object detection; Autonomous vehicles; LiDAR; Point cloud; Sensors; Stereo images;
D O I
10.1016/j.treng.2022.100115
中图分类号
学科分类号
摘要
Detection of the surrounding objects of a vehicle is the most crucial step in autonomous driving. Failure to identify those objects correctly in a timely manner can cause irreparable damage, impacting our safety and society. Several studies have been introduced to identify these objects in the two-dimensional (2D) and three-dimensional (3D) vector space. The 2D object detection method has achieved remarkable success; however, in the last few years, detecting objects in 3D have received more remarkable adoption. 3D object recognition has several advantages over 2D detection methods, as more accurate information about the environment is obtained for better detection. For example, the depth of the images is not considered in the 2D detection, which reduces the detection accuracy. Despite considerable efforts in 3D object detection, it has not yet reached the stage of maturity. Therefore, in this paper, we aim at providing a comprehensive overview of the state-of-the-art 3D object detection methods, with a focus on 1) identifying advantages and limitations, 2) revelling a novel categorization of the literature, 3) outlying the various training procedures, 4) highlighting the research gap in the existing methods and 5) building a road map for future directions. © 2022
引用
收藏
相关论文
共 50 条
  • [21] Multi-Sensor Fusion Technology for 3D Object Detection in Autonomous Driving: A Review
    Wang, Xuan
    Li, Kaiqiang
    Chehri, Abdellah
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (02) : 1148 - 1165
  • [22] TEMPORAL AXIAL ATTENTION FOR LIDAR-BASED 3D OBJECT DETECTION IN AUTONOMOUS DRIVING
    Carranza-Garcia, Manuel
    Riquelme, Jose C.
    Zakhor, Avideh
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 201 - 205
  • [23] Transformer-Based Optimized Multimodal Fusion for 3D Object Detection in Autonomous Driving
    Alaba, Simegnew Yihunie
    Ball, John E.
    IEEE ACCESS, 2024, 12 : 50165 - 50176
  • [24] RCBi-CenterNet: An Absolute Pose Policy for 3D Object Detection in Autonomous Driving
    An, Kang
    Chen, Yixin
    Wang, Suhong
    Xiao, Zhifeng
    APPLIED SCIENCES-BASEL, 2021, 11 (12):
  • [25] Efficient Adversarial Attack Strategy Against 3D Object Detection in Autonomous Driving Systems
    Chen, Hai
    Yan, Huanqian
    Yang, Xiao
    Su, Hang
    Zhao, Shu
    Qian, Fulan
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (11) : 16118 - 16132
  • [26] Context-Aware 3D Object Detection From a Single Image in Autonomous Driving
    Zhou, Dingfu
    Song, Xibin
    Fang, Jin
    Dai, Yuchao
    Li, Hongdong
    Zhang, Liangjun
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (10) : 18568 - 18580
  • [27] 3D Object Detection for Self-Driving Vehicles Enhanced by Object Velocity
    Alexandrino, Leandro
    Olyaei, Hadi Z.
    Albuquerque, Andre
    Georgieva, Petia
    Drummond, Miguel V.
    IEEE ACCESS, 2024, 12 : 8220 - 8229
  • [28] MissVoxelNet: 3D Object Detection for Autonomous Vehicle in Snow Conditions
    The, Anh Do
    Yoo, Myungsik
    2022 THIRTEENTH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS (ICUFN), 2022, : 479 - 482
  • [29] 3D Object Detection Based on LiDAR Data
    Sahba, Ramin
    Sahba, Amin
    Jamshidi, Mo
    Rad, Paul
    2019 IEEE 10TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2019, : 511 - 514
  • [30] POAT-Net: Parallel Offset-Attention Assisted Transformer for 3D Object Detection for Autonomous Driving
    Wang, Jinyang
    Lin, Xiao
    Yu, Hongying
    IEEE ACCESS, 2021, 9 : 151110 - 151117