共 21 条
[1]
Zuo Y., Wu Y., Min G., Huang C., Pe K., An intelligent anomaly detection scheme for micro-services architectures with temporal and spatial data analysis, IEEE Transactions on Cognitive Communications and Networking, 6, 2, pp. 548-561
[2]
Blazquez-Garcia A., Conde A., Mori U., Lozano J. A., A review on outlier/anomaly detection in time series data, ACM Computing Surveys (CSUR), 54, 3, pp. 1-33, (2021)
[3]
Zhang Y. M., Wang H., Wan H. P., Mao J. X., Xu Y. C., Anomaly detection of structural health monitoring data using the maximum likelihood estimation-based Bayesian dynamic linear model, Structural Health Monitoring, 20, 6, pp. 2936-2952, (2021)
[4]
Sabic E., Keeley D., Henderson B., Nannemann S., Healthcare and anomaly detection: using machine learning to predict anomalies in heart rate data, Ai and Society, 36, 1, pp. 149-158, (2021)
[5]
Raja P. M. S., Brain tumor classification using a hybrid deep autoencoder with Bayesian fuzzy clustering-based segmentation approach, Biocybernetics and Biomedical Engineering, 40, 1, pp. 440-453, (2020)
[6]
Adamsa S. O., Azikweb E., Zubaira M. A., Artificial neural network analysis of some selected kdd cup 99dataset for intrusion detection, Acta Informatica Malaysia, 6, 2, pp. 55-61, (2022)
[7]
Ni F. T., Zhang J., Noori M. N., Deep learning for data anomaly detection and data compression of a long‐span suspension bridge, Computer-Aided Civil and Infrastructure Engineering, 35, 7, pp. 685-700, (2020)
[8]
Zhou X., Hu Y., Liang W., Ma J., Jin Q., Variational LSTM enhanced anomaly detection for industrial big data, IEEE Transactions on Industrial Informatics, 17, 5, pp. 3469-3477, (2020)
[9]
Mao J., Wang H., Spencer B. F., Toward data anomaly detection for automated structural health monitoring: Exploiting generative adversarial nets and autoencoders, Structural Health Monitoring, 20, 4, pp. 1609-1626, (2021)
[10]
Liu Y., Garg S., Nie J., Zhang Y., Xiong Z., Kang J., Hossain M. S., Deep anomaly detection for time-series data in industrial IoT: A communication-efficient on-device federated learning approach, IEEE Internet of Things Journal, 8, 8, pp. 6348-6358, (2020)