A Compact V-Band Temperature Compensation Low-Noise Amplifier in a 130 nm SiGe BiCMOS Process

被引:0
作者
Shen, Yi [1 ]
Luo, Jiang [1 ]
Zhao, Wei [1 ]
Dai, Jun-Yan [2 ]
Cheng, Qiang [2 ]
机构
[1] Hangzhou Dianzi Univ, Sch Elect & Informat, Hangzhou 310018, Peoples R China
[2] Southeast Univ, State Key Lab Millimeter Waves, Nanjing 210096, Peoples R China
关键词
millimeter-wave (mm-wave); V-band; SiGe BiCMOS; temperature compensation; low-noise amplifier; RECEIVER;
D O I
10.3390/mi15101248
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This paper presents a compact V-band low-noise amplifier (LNA) featuring temperature compensation, implemented in a 130 nm SiGe BiCMOS process. A negative temperature coefficient bias circuit generates an adaptive current for temperature compensation, enhancing the LNA's temperature robustness. A T-type inductive network is employed to establish two dominant poles at different frequencies, significantly broadening the amplifier's bandwidth. Over the wide temperature range of -55 degrees C to 85 degrees C, the LNA prototype exhibits a gain variation of less than 1.5 dB at test frequencies from 40 GHz to 65 GHz, corresponding to a temperature coefficient of 0.01 dB/degrees C. At -55 degrees C, 25 degrees C, and 85 degrees C, the measured peak gains are 25.5 dB, 25 dB, and 24.4 dB, respectively, with minimum noise figures (NF) of 3.0 dB, 3.5 dB, and 4.2 dB, and DC power consumptions of 22.3 mW, 27.6 mW, and 34.4 mW. Moreover, the total silicon area of the LNA chip is 0.37 mm2, including all test pads, while the core area is only 0.09 mm2.
引用
收藏
页数:12
相关论文
共 50 条
[31]   A 10-mW 3.9-dB NF transformer-based V-band low-noise amplifier in 65-nm CMOS [J].
Yu, Yiming ;
Wu, Yunqiu ;
Zhao, Chenxi ;
Liu, Huihua ;
Ban, Yongling ;
Kang, Kai .
INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2020, 33 (03)
[32]   A 140-220-GHz Low-Noise Amplifier With 6-dB Minimum Noise Figure and 80-GHz Bandwidth in 130-nm SiGe BiCMOS [J].
Mehta, Yash ;
Thomas, Sidharth ;
Babakhani, Aydin .
IEEE MICROWAVE AND WIRELESS TECHNOLOGY LETTERS, 2023, 33 (02) :200-203
[33]   A 18-dBm G-Band Power Amplifier using 130-nm SiGe BiCMOS Technology [J].
Ali, Abdul ;
Colantonio, Paolo ;
Giannini, Franco ;
Kissinger, Dietmar ;
Ng, Herman Jalli ;
Yun, Jongwon .
2019 14TH EUROPEAN MICROWAVE INTEGRATED CIRCUITS CONFERENCE (EUMIC 2019), 2019, :164-167
[34]   A Differential D-Band Low-Noise Amplifier in 0.13 μm SiGe [J].
Aksoyak, Ibrahim Kagan ;
Mock, Matthias ;
Ulusoy, Ahmet Cagri .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2022, 32 (08) :979-982
[35]   A 122-143GHz(∼1/2 fT) Low Noise Amplifier with 7 dB Noise Figure in 130nm SiGe BiCMOS [J].
Qi, Yue ;
Chen, Zhe ;
Wang, Long ;
Yang, Peng ;
Wang, Pinqing ;
Yan, Pinpin ;
Chen, Jixin ;
Hong, Wei .
2024 IEEE MTT-S INTERNATIONAL WIRELESS SYMPOSIUM, IWS 2024, 2024,
[36]   A 90 nm CMOS V-Band Low-Noise Active Balun With Broadband Phase-Correction Technique [J].
Chiang, Hsi-Han ;
Huang, Fu-Chien ;
Wang, Chao-Shiun ;
Wang, Chorng-Kuang .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2011, 46 (11) :2583-2591
[37]   Cryogenic indium-phosphide HEMT low-noise amplifiers at V-band [J].
Tanskanen, JM ;
Kangaslahti, P ;
Ahtola, H ;
Jukkala, P ;
Karttaavi, T ;
Lahdes, M ;
Varis, J ;
Tuovinen, J .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2000, 48 (07) :1283-1286
[38]   A Ka-band High Gain Wideband Low Noise Amplifier in 0.18-μm SiGe BiCMOS [J].
Chen, Zhan ;
Zhou, Chunxia ;
Cheng, Guoxiao ;
Li, Jiankang ;
Wu, Wen .
2022 IEEE MTT-S INTERNATIONAL WIRELESS SYMPOSIUM, IWS, 2022,
[39]   Highly Linear Low Power V-Band Down-Conversion Mixer in SiGe BiCMOS Technology [J].
Marvi, Zahra ;
Ashoori, Ehsan .
2020 IEEE RADIO AND WIRELESS SYMPOSIUM (RWS 2020), 2020, :159-161
[40]   A compact low noise amplifier in SiGe:C BiCMOS technology for 40GHz wireless communications [J].
Pruvost, S ;
Telliez, I ;
Danneville, F ;
Chantre, A ;
Chevalier, P ;
Dambrine, G ;
Lepilliet, S .
2005 IEEE RADIO FREQUENCY INTEGRATED CIRCUITS (RFIC) SYMPOSIUM, DIGEST OF PAPERS, 2005, :565-568