Class-Separation Preserving Pruning for Deep Neural Networks

被引:0
作者
Preet I. [1 ,2 ]
Boydell O. [1 ]
John D. [3 ]
机构
[1] University College Dublin, CeADAR - Ireland's Centre for Applied AI, Dublin
[2] Eaton Corporation Plc., Dublin
[3] University College Dublin, School of Electrical and Electronics Engineering, Dublin
来源
IEEE Transactions on Artificial Intelligence | 2024年 / 5卷 / 01期
关键词
Class-separation score (CSS); deep neural networks (DNNs); pruning; structured pruning;
D O I
10.1109/TAI.2022.3228511
中图分类号
学科分类号
摘要
Neural network pruning has been deemed essential in the deployment of deep neural networks on resource-constrained edge devices, greatly reducing the number of network parameters without drastically compromising accuracy. A class of techniques proposed in the literature assigns an importance score to each parameter and prunes those of the least importance. However, most of these methods are based on generalized estimations of the importance of each parameter, ignoring the context of the specific task at hand. In this article, we propose a task specific pruning approach, CSPrune, which is based on how efficiently a neuron or a convolutional filter is able to separate classes. Our axiomatic approach assigns an importance score based on how separable different classes are in the output activations or feature maps, preserving the separation of classes which avoids the reduction in classification accuracy. Additionally, most pruning algorithms prune individual connections or weights leading to a sparse network without taking into account whether the hardware the network is deployed on can take advantage of that sparsity or not. CSPrune prunes whole neurons or filters which results in a more structured pruned network whose sparsity can be more efficiently utilized by the hardware. We evaluate our pruning method against various benchmark datasets, both small and large, and network architectures and show that our approach outperforms comparable pruning techniques. © 2020 IEEE.
引用
收藏
页码:290 / 299
页数:9
相关论文
共 50 条
  • [31] Resource-Aware Saliency-Guided Differentiable Pruning for Deep Neural Networks
    Kallakuri, Uttej
    Humes, Edward
    Mohsenin, Tinoosh
    PROCEEDING OF THE GREAT LAKES SYMPOSIUM ON VLSI 2024, GLSVLSI 2024, 2024, : 694 - 699
  • [32] A NOVEL LAYERWISE PRUNING METHOD FOR MODEL REDUCTION OF FULLY CONNECTED DEEP NEURAL NETWORKS
    Mauch, Lukas
    Yang, Bin
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 2382 - 2386
  • [33] Partition Pruning: Parallelization-Aware Pruning for Dense Neural Networks
    Shahhosseini, Sina
    Albaqsami, Ahmad
    Jasemi, Masoomeh
    Bagherzadeh, Nader
    2020 28TH EUROMICRO INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED AND NETWORK-BASED PROCESSING (PDP 2020), 2020, : 307 - 311
  • [34] Structured Pruning of RRAM Crossbars for Efficient In-Memory Computing Acceleration of Deep Neural Networks
    Meng, Jian
    Yang, Li
    Peng, Xiaochen
    Yu, Shimeng
    Fan, Deliang
    Seo, Jae-Sun
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2021, 68 (05) : 1576 - 1580
  • [35] MIXP: Efficient Deep Neural Networks Pruning for Further FLOPs Compression via Neuron Bond
    Hu, Bin
    Zhao, Tianming
    Xie, Yucheng
    Wang, Yan
    Guo, Xiaonan
    Cheng, Jerry
    Chen, Yingying
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [36] Flexible Group-Level Pruning of Deep Neural Networks for On-Device Machine Learning
    Lee, Kwangbae
    Kim, Hoseung
    Lee, Hayun
    Shin, Dongkun
    PROCEEDINGS OF THE 2020 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2020), 2020, : 79 - 84
  • [37] Leveraging Structured Pruning of Convolutional Neural Networks
    Tessier, Hugo
    Gripon, Vincent
    Leonardon, Mathieu
    Arzel, Matthieu
    Bertrand, David
    Hannagan, Thomas
    2022 IEEE WORKSHOP ON SIGNAL PROCESSING SYSTEMS (SIPS), 2022, : 174 - 179
  • [38] Magnitude and Uncertainty Pruning Criterion for Neural Networks
    Ko, Vinnie
    Oehmcke, Stefan
    Gieseke, Fabian
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 2317 - 2326
  • [39] Flattening Layer Pruning in Convolutional Neural Networks
    Jeczmionek, Ernest
    Kowalski, Piotr A.
    SYMMETRY-BASEL, 2021, 13 (07):
  • [40] DyPrune: Dynamic Pruning Rates for Neural Networks
    Aires Jonker, Richard Adolph
    Poudel, Roshan
    Fajarda, Olga
    Oliveira, Jose Luis
    Lopes, Rui Pedro
    Matos, Sergio
    PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2023, PT I, 2023, 14115 : 146 - 157