Machine learning for anomaly detection in particle physics

被引:2
|
作者
Belis V. [1 ]
Odagiu P. [1 ]
Aarrestad T.K. [1 ]
机构
[1] Institute for Particle Physics and Astrophysics, ETH Zurich, Zurich
来源
Reviews in Physics | 2024年 / 12卷
关键词
Anomaly detection; Model-independent; Outlier detection; Particle physics; Quantum machine learning;
D O I
10.1016/j.revip.2024.100091
中图分类号
学科分类号
摘要
The detection of out-of-distribution data points is a common task in particle physics. It is used for monitoring complex particle detectors or for identifying rare and unexpected events that may be indicative of new phenomena or physics beyond the Standard Model. Recent advances in Machine Learning for anomaly detection have encouraged the utilization of such techniques on particle physics problems. This review article provides an overview of the state-of-the-art techniques for anomaly detection in particle physics using machine learning. We discuss the challenges associated with anomaly detection in large and complex data sets, such as those produced by high-energy particle colliders, and highlight some of the successful applications of anomaly detection in particle physics experiments. © 2024
引用
收藏
相关论文
共 50 条
  • [31] A Method for Anomaly Detection of User Behaviors Based on Machine Learning
    TIAN Xin-guang 1
    2.Department of Electronic Engineering
    3.Research Institute of Beijing Capitel Group Corporation
    4.Institute of Computing Technology
    The Journal of China Universities of Posts and Telecommunications, 2006, (02) : 61 - 65
  • [32] Anomaly Detection in Log Files Based on Machine Learning Techniques
    Hussein, Salam Allawi
    Repas, Sandor R.
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (03) : 1299 - 1311
  • [33] Analysis of Machine Learning Techniques for Anomaly Detection in the Internet of Things
    Brady, Shane
    Magoni, Damien
    Murphy, John
    Assem, Haytham
    Portillo-Dominguez, A. Omar
    2018 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2018,
  • [34] Evaluation of Machine Learning Algorithms for Anomaly Detection in Industrial Networks
    Bernieri, Giuseppe
    Conti, Mauro
    Turrin, Federico
    2019 IEEE INTERNATIONAL SYMPOSIUM ON MEASUREMENTS & NETWORKING (M&N 2019), 2019,
  • [35] Anomaly Detection with Machine Learning Models Using API Calls
    Sahin, Varol
    Satilmis, Hami
    Yazar, Bilge Kagan
    Akleylek, Sedat
    INFORMATION TECHNOLOGIES AND THEIR APPLICATIONS, PT II, ITTA 2024, 2025, 2226 : 298 - 309
  • [36] Anomaly detection for process monitoring based on machine learning technique
    Hamrouni, Imen
    Lahdhiri, Hajer
    Ben Abdellafou, Khaoula
    Aljuhani, Ahamed
    Taouali, Okba
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (05) : 4073 - 4097
  • [37] IoT Anomaly Detection Using a Multitude of Machine Learning Algorithms
    Balega, Maria
    Farag, Waleed
    Ezekiel, Soundararajan
    Wu, Xin-Wen
    Deak, Alicia
    Good, Zaryn
    2022 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP, AIPR, 2022,
  • [38] Analysis of Machine Learning Algorithms for Anomaly Detection on Edge Devices
    Huc, Aleks
    Salej, Jakob
    Trebar, Mira
    SENSORS, 2021, 21 (14)
  • [39] Unsupervised Machine Learning for Anomaly Detection in Synchrophasor Network Traffic
    Donner, Phillip
    Leger, Aaron St.
    Blaine, Raymond
    2019 51ST NORTH AMERICAN POWER SYMPOSIUM (NAPS), 2019,
  • [40] Anomaly detection in network traffic using extreme learning machine
    Imamverdiyev, Yadigar
    Sukhostat, Lyudmila
    2016 IEEE 10TH INTERNATIONAL CONFERENCE ON APPLICATION OF INFORMATION AND COMMUNICATION TECHNOLOGIES (AICT), 2016, : 418 - 421