Machine learning for anomaly detection in particle physics

被引:26
作者
Belis V. [1 ]
Odagiu P. [1 ]
Aarrestad T.K. [1 ]
机构
[1] Institute for Particle Physics and Astrophysics, ETH Zurich, Zurich
关键词
Anomaly detection; Model-independent; Outlier detection; Particle physics; Quantum machine learning;
D O I
10.1016/j.revip.2024.100091
中图分类号
学科分类号
摘要
The detection of out-of-distribution data points is a common task in particle physics. It is used for monitoring complex particle detectors or for identifying rare and unexpected events that may be indicative of new phenomena or physics beyond the Standard Model. Recent advances in Machine Learning for anomaly detection have encouraged the utilization of such techniques on particle physics problems. This review article provides an overview of the state-of-the-art techniques for anomaly detection in particle physics using machine learning. We discuss the challenges associated with anomaly detection in large and complex data sets, such as those produced by high-energy particle colliders, and highlight some of the successful applications of anomaly detection in particle physics experiments. © 2024
引用
收藏
相关论文
共 195 条
[1]  
Pimentel M.A., Clifton D.A., Clifton L., Tarassenko L., A review of novelty detection, Signal Process., 99, pp. 215-249, (2014)
[2]  
Kasieczka G., Et al., The LHC Olympics 2020: a community challenge for anomaly detection in high energy physics, Rep. Progr. Phys., 84, 12, (2021)
[3]  
Kasieczka G., Nachman B., Shih D., New methods and datasets for group anomaly detection from fundamental physics, Conference on Knowledge Discovery and Data Mining, (2021)
[4]  
Govorkova E., Puljak E., Aarrestad T., Pierini M., Wozniak K.A., Ngadiuba J., LHC physics dataset for unsupervised New Physics detection at 40 MHz, Sci. Data, 9, 1, (2022)
[5]  
Aarrestad T., van Beekveld M., Bona M., Boveia A., Caron S., Davies J., Simone A.D., Doglioni C., Duarte J.M., Farbin A., Gupta H., Hendriks L., Heinrich L., Howarth J., Jawahar P., Jueid A., Lastow J., Leinweber A., Mamuzic J., Merenyi E., Morandini A., Moskvitina P., Nellist C., Ngadiuba J., Ostdiek B., Pierini M., Ravina B., de Austri R.R., Sekmen S., Touranakou M., Vaskeviciute M., Vilalta R., Vlimant J.R., Verheyen R., White M., Wulff E., Wallin E., Wozniak K.A., Zhang Z., The dark machine
[6]  
Chandola V., Banerjee A., Kumar V., Anomaly detection: A survey, ACM Comput. Surv., 41, 3, (2009)
[7]  
Aggarwal C.C., Outlier Analysis, (2016)
[8]  
Aguilar-Saavedra J.A., Collins J., Mishra R.K., A generic anti-QCD jet tagger, J. High Energy Phys., 2017, 11, (2017)
[9]  
The ATLAS experiment at the CERN large hadron collider, JINST, 3, 8, (2008)
[10]  
The CMS Experiment at the CERN LHC, JINST, 3, (2008)