Deciphering the hydrodynamics of lipid-coated microbubble sonoluminescence for sonodynamic therapy

被引:1
|
作者
Datta, Priyankan [1 ]
Moolayadukkam, Sreejesh [1 ,2 ]
Sahu, Rakesh Prasad [3 ,4 ]
Ganguly, Ranjan [5 ]
Sen, Swarnendu [6 ]
Puri, Ishwar K. [1 ,7 ,8 ]
机构
[1] Univ Southern Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA
[2] Univ Southern Calif, Iovine & Young Acad, Los Angeles, CA 90089 USA
[3] McMaster Univ, Dept Mat Sci & Engn, Hamilton, ON L8S 4L8, Canada
[4] McMaster Univ, Dept Mech Engn, Hamilton, ON L8S 4L8, Canada
[5] Jadavpur Univ, Dept Power Engn, Kolkata 700106, India
[6] Jadavpur Univ, Dept Mech Engn, Kolkata 700032, India
[7] Univ Southern Calif, Mork Family Dept Chem Engn & Mat Sci, Los Angeles, CA 90089 USA
[8] Univ Southern Calif, Alfred E Mann Dept Biomed Engn, Los Angeles, CA 90089 USA
关键词
Sonodynamic therapy; Glioblastoma; Lipid-coated microbubble; Ultrasound; Sonoluminescence; ULTRASOUND; CANCER; MICROCAVITATION; BUBBLES; MODEL;
D O I
10.1016/j.ultsonch.2024.107090
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Sonodynamic therapy (SDT) is a minimally invasive targeted cancer therapy that uses focused low-intensity ultrasound (<10 MPa, <10 W/cm(2)) to activate sonosensitizer drugs. Once activated, these chemical compounds generate reactive oxygen species (ROS) to damage and kill cancer cells. A Phase I clinical trial has shown promising results for treating glioblastoma with SDT. We hypothesize that the efficacy of SDT can be improved by introducing lipid-coated microbubbles that produce a sonochemical effect that enhances ROS production. We investigate the hydrodynamics of a U.S. Food and Drug Administration (FDA)-approved microbubble, Lumason (R), and a phospholipid-coated oxygen microbubble to predict the ultrasound parameters that induce sonoluminescence onset in biophysically relevant medium (e.g., water and blood) under clinical SDT conditions. The threshold pressures and frequencies for sonoluminescence with these therapeutic agents lie between 20 kHz - 1 MHz and 0.05 MPa - 1 MPa, respectively. The lipid-coated oxygen microbubble exhibits stronger sonoluminescence than the Lumason (R) microbubble, suggesting its use for improving SDT efficacy.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] APPLICATIONS OF LIPID-COATED MICROBUBBLE ULTRASONIC CONTRAST TO TUMOR-THERAPY
    SIMON, RH
    HO, SY
    LANGE, SC
    UPHOFF, DF
    DARRIGO, JS
    ULTRASOUND IN MEDICINE AND BIOLOGY, 1993, 19 (02): : 123 - 125
  • [2] The dependence of lipid-coated microbubble dissolution behavior on acyl chain length
    Borden, MA
    Longo, ML
    BIOPHYSICAL JOURNAL, 2002, 82 (01) : 35A - 35A
  • [3] Lipid-Coated Iohexol-Carbon Dots for Sonodynamic Therapy of 4T1 Cancer Cells
    Shinde, Vinod Ravasaheb
    Khatun, Sajmina
    Thanekar, Ajinkya Madhukar
    Rengan, Aravind Kumar
    PROCEEDINGS OF THE 2024 IEEE SOUTH ASIAN ULTRASONICS SYMPOSIUM, SAUS 2024, 2024,
  • [4] Lipid-coated gold nanocomposites for enhanced cancer therapy
    Kang, Ji Hee
    Ko, Young Tag
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2015, 10 : 33 - 45
  • [5] Lipid-Coated Nanobubbles in Plants
    Ingram, Stephen
    Jansen, Steven
    Schenk, H. Jochen
    NANOMATERIALS, 2023, 13 (11)
  • [6] Dynamics of lipid-coated microbubbles
    Borden, Mark
    Kwan, James
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [7] Lipid-Coated Calcium Phosphate Nanoparticles for Nonviral Gene Therapy
    Haynes, Matthew T.
    Huang, Leaf
    NONVIRAL VECTORS FOR GENE THERAPY LIPID- AND POLYMER-BASED GENE TRANSFER, 2014, 88 : 205 - 229
  • [8] Lipid-Coated Nanosized Drug Delivery Systems for an Effective Cancer Therapy
    Esim, Ozge
    Hascicek, Canan
    CURRENT DRUG DELIVERY, 2021, 18 (02) : 147 - 161
  • [9] Fabrication of Lipid-Coated Chitosan Nanoparticles
    Gad, Sheryhan F.
    Fetih, Gihan N.
    Tous, Sozan S.
    Pauletti, Giovanni M.
    BRITISH JOURNAL OF PHARMACEUTICAL RESEARCH, 2016, 13 (01):
  • [10] Supramolecular Assemblies of Lipid-Coated Polyelectrolytes
    Tresset, Guillaume
    Lansac, Yves
    Romet-Lemonne, Guillaume
    BIOPHYSICAL JOURNAL, 2012, 102 (03) : 718A - 719A