Generation of vortices in the Ginzburg-Landau heat flow

被引:0
作者
Kowalczyk, Michas [1 ,2 ,3 ]
Lamy, Xavier [4 ]
机构
[1] Univ Chile, Dept Ingenieri Matemat, Casilla 170 Correo 3, Santiago, Chile
[2] Univ Chile, Ctr Modelamiento Matematico, UMI CNRS 2807, Casilla 170 Correo 3, Santiago, Chile
[3] Polish Acad Sci, Inst Math, Ul Sniadeckich 8, PL-00656 Warsaw, Poland
[4] Univ Toulouse, Inst Math Toulouse, UMR 5219, CNRS UPS IMT, 118 Route Narbonne, F-31062 Toulouse 9, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2024年 / 41卷 / 06期
关键词
Ginzburg-Landau; vortices; ENERGY-DISSIPATION RATES; VORTEX COLLISIONS; DYNAMICS; MOTION;
D O I
10.4171/AIHPC/96
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Ginzburg-Landau heat flow on the flat two-dimensional torus, starting from initial data with a finite number of nondegenerate zeros - but very high initial energy. We show that the initial zeros are conserved, while away from these zeros the modulus quickly grows close to 1, and the flow rapidly enters a logarithmic energy regime, from which the evolution of vortices can be described by the works of Bethuel, Orlandi and Smets.
引用
收藏
页码:1509 / 1526
页数:18
相关论文
共 19 条
  • [1] Baraket S., Critical points of the Ginzburg–Landau system on a Riemannian surface, Asymptotic Anal, 13, 3, pp. 277-317, (1996)
  • [2] Bauman P., Chen C.-N., Phillips D., Sternberg P., Vortex annihilation in nonlinear heat flow for Ginzburg–Landau systems, European J. Appl. Math, 6, 2, pp. 115-126, (1995)
  • [3] Bethuel F., Brezis H., Helein F., Ginzburg–Landau vortices, Prog. Nonlinear Differ. Equ. Appl, 13, (1994)
  • [4] Bethuel F., Orlandi G., Smets D., Collisions and phase-vortex interactions in dissipative Ginzburg–Landau dynamics, Duke Math. J, 130, 3, pp. 523-614, (2005)
  • [5] Bethuel F., Orlandi G., Smets D., Dynamics of multiple degree Ginzburg–Landau vortices, Comm. Math. Phys, 272, 1, pp. 229-261, (2007)
  • [6] Bethuel F., Orlandi G., Smets D., On the Cauchy problem for phase and vortices in the parabolic Ginzburg–Landau equation, Singularities in PDE and the calculus of variations, pp. 11-31, (2008)
  • [7] Chen K.-S., Sternberg P., Dynamics of Ginzburg–Landau and Gross–Pitaevskii vortices on manifolds, Discrete Contin. Dyn. Syst, 34, 5, pp. 1905-1931, (2014)
  • [8] Chen X., Generation, propagation, and annihilation of metastable patterns, J. Differential Equations, 206, 2, pp. 399-437, (2004)
  • [9] Ignat R., Jerrard R. L., Renormalized energy between vortices in some Ginzburg–Landau models on 2-dimensional Riemannian manifolds, Arch. Ration. Mech. Anal, 239, 3, pp. 1577-1666, (2021)
  • [10] Jerrard R. L., Soner H. M., Dynamics of Ginzburg–Landau vortices, Arch. Rational Mech. Anal, 142, 2, pp. 99-125, (1998)