Exploring Nigeria's waste-to-energy potential: a sustainable solution for electricity generation

被引:1
|
作者
Umar, Yusuf [1 ]
Yakubu, Rahimat Oyiza [2 ]
Abdulazeez, Abdulazeez Alhaji [3 ]
Ijeoma, Muzan Williams [4 ]
机构
[1] Nigerian Sovereign Investment Author, Renewable Investment Platform Limitless Energy RIP, Abuja, Nigeria
[2] Kwame Nkrumah Univ Sci & Technol, Dept Mech Engn, AK-3851973 Kumasi, Ghana
[3] Fed Polytech, Dept Chem Engn Technol, Nasarawa, Nigeria
[4] Clemson Univ, Dept Environm Engn & Earth Sci, Clemson, SC 29634 USA
来源
CLEAN ENERGY | 2024年 / 8卷 / 06期
关键词
Nigeria; waste-to-energy; biomass waste; electricity access; sustainability;
D O I
10.1093/ce/zkae080
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This research explored the potential of waste-to-energy (WtE) technology as a sustainable solution to Nigeria's energy deficit and waste management challenges. Various WtE technologies were reviewed, including incineration, anaerobic digestion, gasification, and pyrolysis, highlighting their applicability and benefits for Nigeria. The potential energy yield from different waste streams, combined with economic viability, environmental benefits, and social impacts, demonstrates the importance of WtE technology for the country. The lower heating value of municipal solid waste and agricultural residue significantly affects energy yield. The incineration of 27.36 million tons of organic waste annually while using relevant technology with energy recovery could generate between 14.52 and 23.08 TWh of electricity per annum. The inclusion of paper and textiles increases the potential yield to 18.69 and 29.71 TWh per year. The potential power generation from agricultural residues is estimated at 80.3 GW. However, Nigeria must address technical, economic, and policy challenges to realize this potential. This can be achieved by developing a robust regulatory framework, fostering public-private partnerships, enhancing local capacity, engaging communities, and investing in research and development. The implementation of WtE projects will facilitate sustainable waste management, improve energy security, create jobs, and promote environmental stewardship. Various waste-to-energy technologies are reviewed, including incineration, anaerobic digestion, gasification, and pyrolysis, highlighting their applicability and benefits for Nigeria. The potential energy yield from different waste streams, combined with economic viability, environmental benefits, and social impacts, demonstrates the importance of the technology for the country. Graphical Abstract
引用
收藏
页码:82 / 95
页数:14
相关论文
共 50 条
  • [1] Proximate analysis of waste-to-energy potential of municipal solid waste for sustainable renewable energy generation
    Lawal, I. M.
    Ndagi, A.
    Mohammed, A.
    Saleh, Y. Y.
    Shuaibu, A.
    Hassan, I.
    Abubakar, S.
    Soja, U. B.
    Jagaba, A. H.
    AIN SHAMS ENGINEERING JOURNAL, 2024, 15 (01)
  • [2] Towards sustainable electricity generation: Evaluating carbon footprint in waste-to-energy plants for environmental mitigation in Iran
    Rouhi, Kiana
    Motlagh, Majid Shafiepour
    Dalir, Fatemeh
    Perez, Javier
    Golzary, Abooali
    ENERGY REPORTS, 2024, 11 : 2623 - 2632
  • [3] New developments in sustainable waste-to-energy systems
    Loizidou, Maria
    Moustakas, Konstantinos
    Rehan, Mohammad
    Nizami, Abdul-Sattar
    Tabatabaei, Meisam
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2021, 151
  • [4] Techno-economic assessment of energy and environmental impact of waste-to-energy electricity generation
    Asim, Muhammad
    Kumar, Rohan
    Kanwal, Ammara
    Shahzad, Amir
    Ahmad, Ashfaq
    Farooq, Muhammad
    ENERGY REPORTS, 2023, 9 : 1087 - 1097
  • [5] Techno-economic assessment of energy and environmental impact of waste-to-energy electricity generation
    Asim, Muhammad
    Kumar, Rohan
    Kanwal, Ammara
    Shahzad, Amir
    Ahmad, Ashfaq
    Farooq, Muhammad
    ENERGY REPORTS, 2023, 9 : 1087 - 1097
  • [6] Techno-economic assessment of energy and environmental impact of waste-to-energy electricity generation
    Asim M.
    Kumar R.
    Kanwal A.
    Shahzad A.
    Ahmad A.
    Farooq M.
    Energy Reports, 2023, 9 : 1087 - 1097
  • [7] Sustainable management of waste-to-energy facilities
    Cucchiella, Federica
    D'Adamo, Idiano
    Gastaldi, Massimo
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014, 33 : 719 - 728
  • [8] The impact of sustainable supply chain on waste-to-energy operations
    Mohammadi, Maryam
    Harjunkoski, Iiro
    29TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PT B, 2019, 46 : 1147 - 1152
  • [9] The potential of sustainable municipal solid waste-to-energy management in the Palestinian Territories
    Tayeh, Rawan A.
    Alsayed, Mohammed F.
    Saleh, Yahya A.
    JOURNAL OF CLEANER PRODUCTION, 2021, 279
  • [10] Sustainable management of municipal solid waste through waste-to-energy technologies
    Varjani, Sunita
    Shahbeig, Hossein
    Popat, Kartik
    Patel, Zeel
    Vyas, Shaili
    Shah, Anil, V
    Barcelo, Damia
    Huu Hao Ngo
    Sonne, Christian
    Lam, Su Shiung
    Aghbashlo, Mortaza
    Tabatabaei, Meisam
    BIORESOURCE TECHNOLOGY, 2022, 355