Space-time Fourier ptychography for in vivo quantitative phase imaging

被引:0
作者
Sun, Ming [1 ]
Wang, Kunyi [1 ]
Mishra, Yogeshwar Nath [1 ]
Qiu, Simeng [1 ]
Heidrich, Wolfgang [1 ]
机构
[1] King Abdullah Univ Sci & Technol KAUST, Visual Comp Ctr, Thuwal 239556900, Saudi Arabia
来源
OPTICA | 2024年 / 11卷 / 09期
关键词
OPTICAL-FLOW; MICROSCOPY; LIVE; ILLUMINATION; FIELD; RETRIEVAL; CELLS;
D O I
10.1364/OPTICA.531646
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantitative phase imaging of living biological specimens is challenging due to their continuous movement and complex behavior. Here, we introduce space-time Fourier ptychography (ST-FP), which combines a fast Fourier ptychography (FP) model based on compressive sensing with space-time motion priors for joint reconstruction of quantitative phase, intensity, and motion fields across consecutive frames. Using the same input data as compressive sensing FP, ST-FP increases the space-bandwidth-time product of the reconstructed complex image sequence while leveraging redundant temporal information to achieve robust reconstruction performance. The efficacy of this approach is demonstrated across various applications, particularly in observing living microorganisms undergoing rapid morphological changes and reconstructing amplitude and phase targets in motion. The improved phase retrieval capability of ST-FP enables digital refocusing, facilitating comprehensive three-dimensional analysis of microorganisms. This advancement paves the way for enhanced visualization of cellular processes, developmental biology studies, and investigations into life mechanics at the microscopic level. (c) 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:1250 / 1260
页数:11
相关论文
共 81 条
  • [1] High-speed multi-objective Fourier ptychographic microscopy
    Aidukas, Tomas
    Konda, Pavan C.
    Harvey, Andrew R.
    [J]. OPTICS EXPRESS, 2022, 30 (16) : 29189 - 29205
  • [2] Ananthakrishnan R, 2007, INT J BIOL SCI, V3, P303
  • [3] [Anonymous], 2009, BRIT MACH VIS C
  • [4] On the transport of intensity technique for phase retrieval
    Beleggia, M
    Schofield, MA
    Volkov, VV
    Zhu, Y
    [J]. ULTRAMICROSCOPY, 2004, 102 (01) : 37 - 49
  • [5] Motion-corrected Fourier ptychography
    Bian, Liheng
    Zheng, Guoan
    Guo, Kaikai
    Suo, Jinli
    Yang, Changhuei
    Chen, Feng
    Dai, Qionghai
    [J]. BIOMEDICAL OPTICS EXPRESS, 2016, 7 (11): : 4543 - 4553
  • [6] Dynamic Fourier ptychography with deep spatiotemporal priors
    Bohra, Pakshal
    Pham, Thanh-an
    Long, Yuxuan
    Yoo, Jaejun
    Unser, Michael
    [J]. INVERSE PROBLEMS, 2023, 39 (06)
  • [7] Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells
    Bon, Pierre
    Maucort, Guillaume
    Wattellier, Benoit
    Monneret, Serge
    [J]. OPTICS EXPRESS, 2009, 17 (15): : 13080 - 13094
  • [8] Distributed optimization and statistical learning via the alternating direction method of multipliers
    Boyd S.
    Parikh N.
    Chu E.
    Peleato B.
    Eckstein J.
    [J]. Foundations and Trends in Machine Learning, 2010, 3 (01): : 1 - 122
  • [9] Dynamic Structured Illumination Microscopy with a Neural Space-time Model
    Cao, Ruiming
    Liu, Fanglin Linda
    Yeh, Li-Hao
    Waller, Laura
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL PHOTOGRAPHY (ICCP), 2022,
  • [10] Quantitative differential phase contrast (DPC) microscopy with computational aberration correction
    Chen, Michael
    Phillips, Zachary F.
    Waller, Laura
    [J]. OPTICS EXPRESS, 2018, 26 (25): : 32888 - 32899