Cross-attentional subdomain adaptation with selective knowledge distillation for motor fault diagnosis under variable working conditions

被引:1
|
作者
Huang, Yixiang [1 ]
Zhang, Kaiwen [1 ]
Xia, Pengcheng [1 ]
Wang, Zhilin [2 ]
Li, Yanming [1 ]
Liu, Chengliang [1 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Mech Syst & Vibrat, Shanghai, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Motor fault diagnosis; Subdomain adaptation; Cross-attention mechanism; Transformer; Knowledge distillation; NETWORK; SPEED;
D O I
10.1016/j.aei.2024.102948
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Motor fault diagnosis under variable working conditions is an open challenge for practical application. Domain adaptation has been explored for reducing feature distribution discrepancy across working conditions. However, existing methods overlook the relations and the domain-related features among individual sample pairs across different domains, and the quality of pseudo labels significantly limits the subdomain adaptation performance. To tackle these limitations, a cross-attentional subdomain adaptation (CroAttSA) method with clustering-based selective knowledge distillation for motor fault diagnosis under variable working conditions is proposed. A triplebranch transformer with self-attention and cross-domain-attention is designed for domain-specific and domaincorrelated feature extraction. Additionally, a correlated local maximum mean discrepancy (CLMMD) loss is introduced for more fine-grained and fault-related subdomain adaptation. A clustering-based selective knowledge distillation strategy is also proposed to improve the quality of the pseudo labels for enhanced model performance. Extensive experiments on motor fault diagnosis under variable loads and rotating speeds are conducted, and the comparison and ablation study results have verified the model effectiveness.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Class Subdomain Adaptation Network for Bearing Fault Diagnosis Under Variable Working Conditions
    Zhang, Lu
    Li, Hua
    Cui, Jie
    Li, Wei
    Wang, Xiaodong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [2] Fault Diagnosis Method for Marine Engine under Variable Working Conditions Based on Adversarial Subdomain Adaptation
    Zhang, Xiaorong
    Zhou, Mingshun
    Wang, Peng
    2024 4TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND INTELLIGENT SYSTEMS ENGINEERING, MLISE 2024, 2024, : 124 - 132
  • [3] Fault diagnosis of rolling bearing under variable operating conditions based on subdomain adaptation
    Dong S.-J.
    Zhu P.
    Pei X.-W.
    Li Y.
    Hu X.-L.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2022, 52 (02): : 288 - 295
  • [4] An Adversarial Multisource Data Subdomain Adaptation Model: A Promising Tool for Fault Diagnosis of Induction Motor Under Cross-Operating Conditions
    Shi, Jiancong
    Wang, Xinglong
    Lu, Siliang
    Zheng, Jinde
    Dong, Hui
    Zhang, Jun
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [5] Bearing Fault Diagnosis Under Variable Working Conditions Base on Contrastive Domain Adaptation Method
    An, Yiyao
    Zhang, Ke
    Chai, Yi
    Liu, Qie
    Huang, Xinghua
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [6] Bearing fault diagnosis in variable working conditions based on domain adaptation
    Cao, Jie
    Yin, Haonan
    Lei, Xiaogang
    Wang, Jinhua
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2024, 50 (08): : 2382 - 2390
  • [7] Knowledge mapping-based adversarial domain adaptation: A novel fault diagnosis method with high generalizability under variable working conditions
    Li, Qi
    Shen, Changqing
    Chen, Liang
    Zhu, Zhongkui
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2021, 147
  • [8] A multi-level adaptation scheme for hierarchical bearing fault diagnosis under variable working conditions
    Su, Kaige
    Liu, Jianhua
    Xiong, Hui
    JOURNAL OF MANUFACTURING SYSTEMS, 2022, 64 : 251 - 260
  • [9] Domain adaptation network base on contrastive learning for bearings fault diagnosis under variable working conditions
    An, Yiyao
    Zhang, Ke
    Chai, Yi
    Liu, Qie
    Huang, Xinghua
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 212
  • [10] Rolling Bearing Fault Diagnosis under Variable Working Conditions Based on Joint Distribution Adaptation and SVM
    Li, Ming
    Sun, Zhao-Hui
    He, Weihui
    Qiu, Siqi
    Liu, Bo
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,