Q-compensated borehole seismic data reverse time migration with irregular topography based on mesh free method

被引:0
|
作者
Wei, Guohua [1 ,2 ]
Gu, Bingluo [1 ]
Duan, Peiran [1 ]
Zhang, Shanshan [1 ]
Li, Zhenchun [1 ]
Kong, Qingfeng [2 ]
机构
[1] School of Geosciences, China University of Petroleum (East China), Qingdao
[2] Shengli Geophysical Institute in SINOPEC, Dongying
来源
Zhongguo Shiyou Daxue Xuebao (Ziran Kexue Ban)/Journal of China University of Petroleum (Edition of Natural Science) | 2024年 / 48卷 / 04期
关键词
borehole seismic; irregular topography; Q-compensated reverse time migration; radius-basis-function finite-difference;
D O I
10.3969/j.issn.1673-5005.2024.04.007
中图分类号
学科分类号
摘要
Borehole seismic theoretically offers advantages such as high signal-to-noise ratio, wide frequency band, rich wavefield information, and strong reservoir identification capabilities, allowing for detailed reservoir imaging around the well. However, the source energy of borehole seismic is weak, resulting in stronger absorption attenuation effect in subsurface media compared to surface seismic. Furthermore, irregular topography and complex structure around the borehole significantly impact fine migration imaging. Therefore, it is essential to develop an attenuation compensation migration imaging method suited for irregular topography in borehole seismic. Using the principle of radius-basis-function finite-difference method, we establish a high-precision meshfree radius-basis-function finite-difference method with irregular topography of viscoacoustic wave equation. This method introduces a mixed Gaussian cubic basis-function and designs a node generation strategy for irregular topography. In addition, we apply this method to the improved viscoacoustic wave equation based on Kelvin-Voigt model to implement an efficient and stable Q-compensated reverse time migration. The results demonstrate that the proposed Q-compensated reverse time migration imaging method can achieve high-precision imaging of irregular topography for borehole seismic with attenuation compensation, effectively restoring the profile energy, correcting phase distortion, balancing energy distribution in the profile, and improving imaging quality. © 2024 University of Petroleum, China. All rights reserved.
引用
收藏
页码:68 / 79
页数:11
相关论文
共 27 条
  • [11] YAN H, LIU Y., Visco-acoustic prestack reverse-time migration based on the time-space domain adaptive high-order finite-difference method [ J], Geophysical Prospecting, 61, 5, pp. 941-954, (2013)
  • [12] ZHAO Y, MAO N, REN ZM., A stable and efficient approach of Q reverse time migration [ J], Geophysics, 83, 6, pp. S557-S567, (2018)
  • [13] KELLY K R, WARD R W, TREITEL S, Et al., Synthetic seismograms: a finite-difference approach [ J], Geophysics, 41, 1, pp. 2-27, (1976)
  • [14] MARFURT K J., Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations, Geophysics, 49, 5, pp. 533-549, (1984)
  • [15] VIRIEUX J., P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method[J], Geophysics, 51, 4, pp. 889-901, (1986)
  • [16] LIU Libin, DUAN Peiran, ZHANG Yunyin, Et al., Overview of mesh-free method of seismic forward numerical simulation, Progress in Exploration Geophysics, 35, 5, pp. 1815-1825, (2000)
  • [17] BUHMANN M D., Radial basis functions: theory and implementations, pp. 99-136, (2003)
  • [18] SU L., A radial basis function (RBF) -finite difference (FD) method for the backward heat conduction problem [ J ], Applied Mathematics and Computation, 354, pp. 232-247, (2019)
  • [19] DUAN P R, GU B L, LI Z C, Et al., An adaptive node-distribution method for radial-basis-function finite difference modeling with optimal shape parameter, Geophysics, 86, 1, pp. T1-T18, (2021)
  • [20] MISHRA P K, NATH S K, KOSEC G, Et al., An improved radial basis-pseudospectral method with hybrid Gaussian-cubic kernels, Engineering Analysis with Boundary Elements, 80, pp. 162-171, (2017)