Nonlinear chaotic Lorenz-Lü-Chen fractional order dynamics: A novel machine learning expedition with deep autoregressive exogenous neural networks

被引:3
作者
Hassan, Shahzaib Ahmed [1 ]
Raja, Muhammad Junaid Ali Asif [1 ]
Chang, Chuan-Yu [1 ]
Shu, Chi-Min [2 ]
Shoaib, Muhammad [3 ]
Kiani, Adiqa Kausar [4 ]
Raja, Muhammad Asif Zahoor [5 ]
机构
[1] Natl Yunlin Univ Sci & Technol, Dept Comp Sci & Informat Engn, 123 Univ Rd,Sect 3, Touliu 64002, Yunlin, Taiwan
[2] Natl Yunlin Univ Sci & Technol, Dept Safety Hlth & Environm Engn, 123 Univ Rd,Sect 3, Touliu 64002, Yunlin, Taiwan
[3] Yuan Ze Univ, AI Dept, Taoyuan 320, Taiwan
[4] Natl Yunlin Univ Sci & Technol, Future Technol Res Ctr, 123 Univ Rd,Sect 3, Touliu 64002, Yunlin, Taiwan
[5] Natl Yunlin Univ Sci & Technol, Grad Sch Engn Sci & Technol, 123 Univ Rd,Sect 3, Touliu 64002, Yunlin, Taiwan
关键词
Chaotic attractors; Fractional modelling; Fractional Adams-Bashforth-Moulton predic-; tor-corrector method; Nonlinear autoregressive exogenous neural; networks; Levenberg-Marquardt algorithm; Step-ahead prediction; LORENZ SYSTEM; SYNCHRONIZATION; MODEL; CHEN;
D O I
10.1016/j.chaos.2024.115620
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This exhaustive study entails fractional processing of the unified chaotic Lorenz-L & uuml;-Chen attractors using machine learning expedition with Levenberg-Marquardt optimized deep nonlinear autoregressive exogenous neural networks (NARX-NNs-LM). The fractional Lorenz-L & uuml;-Chen attractors (FLLCA) system is unified by three Caputobased fractional differential equations reflecting Lorenz, L & uuml;, Chen attractors exacted by the single control parameter. The Fractional Adams-Bashforth-Moulton predictor-corrector method is efficaciously employed for the FLLCA models for different variation of fractional orders to generate synthetic datasets for temporal anticipation and processing. Acquired datasets of FLLCA systems were arbitrarily split into a training, validation and test sets for the execution of nonlinear autoregressive exogenous neural networks optimized sequentially using the Levenberg-Marquardt algorithm. This refined NARX-NNs-LM strategy is validated across the reference numerical solutions via scrutiny on mean square error (MSE) convergence graphs, error histograms, regression indices, error autocorrelations, error input autocorrelations and time series response on exhaustive experimentation study on FLLCA systems. The predictive strength of the NARX-NNs-LM strategy is analyzed by means of step-ahead and multistep ahead predictors. Diminutive error metrics on sundry FLLCA scenarios reflect the expert utilization of NARX-NNs-LM for the precise examination, anticipation and forecasting of nonlinear chaotic fractional attractors.
引用
收藏
页数:28
相关论文
共 104 条
[51]   Experimental Study of Fractional-Order RC Circuit Model Using the Caputo and Caputo-Fabrizio Derivatives [J].
Lin, Da ;
Liao, Xiaozhong ;
Dong, Lei ;
Yang, Ruocen ;
Yu, Samson S. ;
Iu, Herbert Ho-Ching ;
Fernando, Tyrone ;
Li, Zhen .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2021, 68 (03) :1034-1044
[52]   Diversified Butterfly Attractors of Memristive HNN With Two Memristive Systems and Application in IoMT for Privacy Protection [J].
Lin, Hairong ;
Deng, Xiaoheng ;
Yu, Fei ;
Sun, Yichuang .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2025, 44 (01) :304-316
[53]   Grid Multibutterfly Memristive Neural Network With Three Memristive Systems: Modeling, Dynamic Analysis, and Application in Police IoT [J].
Lin, Hairong ;
Deng, Xiaoheng ;
Yu, Fei ;
Sun, Yichuang .
IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (18) :29878-29889
[54]   A Review of Chaotic Systems Based on Memristive Hopfield Neural Networks [J].
Lin, Hairong ;
Wang, Chunhua ;
Yu, Fei ;
Sun, Jingru ;
Du, Sichun ;
Deng, Zekun ;
Deng, Quanli .
MATHEMATICS, 2023, 11 (06)
[55]   On the Dynamics of the Unified Chaotic System Between Lorenz and Chen Systems [J].
Llibre, Jaume ;
Rodrigues, Ana .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (09)
[56]   The thermodynamic efficiency of the Lorenz system [J].
Lopez, Alvaro G. ;
Benito, Fernando ;
Sabuco, Juan ;
Delgado-Bonal, Alfonso .
CHAOS SOLITONS & FRACTALS, 2023, 172
[57]  
Lorenz E N., 1996, Pure Appl. Geophys, V147, P598, DOI DOI 10.1201/9781482288988
[58]  
Lorenz Edward., 1972, AM ASS ADV SCI 139 M
[59]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
[60]  
2