Sim-to-Real RNN-Based Framework for the Precise Positioning of Autonomous Mobile Robots

被引:0
|
作者
Mutti, Stefano [1 ,2 ]
Pedrocchi, Nicola [3 ]
Valente, Anna [2 ]
Dimauro, Giovanni [1 ]
机构
[1] Univ Bari Aldo Moro, Dept Comp Sci, I-70121 Bari, Italy
[2] SUPSI, Inst Syst & Technol Sustainable Prod, East Campus, CH-6962 Lugano, Switzerland
[3] CNR, Inst Intelligent Ind Technol & Syst Adv Mfg, I-20133 Milan, Italy
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Location awareness; Data models; Robot sensing systems; Robots; Training; Laser modes; Computational modeling; Cloud computing; Recurrent neural networks; Mobile robots; Mobile robot localization; transfer learning; recurrent neural networks; lidar-based localization; LOCALIZATION; TRACKING; SYSTEM;
D O I
10.1109/ACCESS.2024.3488175
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work proposes a recurrent neural network-based sim-to-real method to learn mobile robot localization using lidar data in dynamic environments. The main aim of the algorithm is to estimate a Cartesian position error relative to a saved position by means of stored lidar readings in a two-dimensional environment, using lidar data as input. To achieve this, we propose a method that first trains a model on synthetic and augmented LiDAR data to embed rigid transformations into the deep learning model and then fine-tunes the model on real positions using real-world data and external camera measures to produce training labels. This pre-training and fine-tuning approach considerably reduces the time, the computation power, and the amount of real-world data needed to have an accurate model, allowing running the fine-positioning model on the edge of autonomous mobile robots(AMRs). After optimizing the model architecture and hyperparameters, the devised model is tested in different scenarios, comparing the precise positioning capability of AMRs with that of a classical iterative closest point and advanced Monte Carlo localization.
引用
收藏
页码:163948 / 163957
页数:10
相关论文
共 50 条
  • [1] Sim-to-Real Transfer of Automatic Extinguishing Strategy for Firefighting Robots
    Chaoxia, Chenyu
    Shang, Weiwei
    Zhou, Junyi
    Yang, Zhiwei
    Zhang, Fei
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2025, 10 (01): : 1 - 8
  • [2] Sim-to-Real of Soft Robots With Learned Residual Physics
    Gao, Junpeng
    Michelis, Mike Y.
    Spielberg, Andrew
    Katzschmann, Robert K.
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (10): : 8523 - 8530
  • [3] A Survey of Sim-to-Real Transfer Techniques Applied to Reinforcement Learning for Bioinspired Robots
    Zhu, Wei
    Guo, Xian
    Owaki, Dai
    Kutsuzawa, Kyo
    Hayashibe, Mitsuhiro
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (07) : 3444 - 3459
  • [4] A Sim-to-Real Instance Segmentation Framework for Densely Stacked Cartons
    Wang, Xu
    Li, Junliang
    Zheng, Wenli
    Luo, Huanliang
    Wang, Faping
    Chen, Yongquan
    Huang, Rui
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (06): : 5775 - 5782
  • [5] RNN-Based Quadratic Programming Scheme for Tennis-Training Robots With Flexible Capabilities
    Jin, Long
    Zhang, Guoqian
    Wang, Yang
    Li, Shuai
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2023, 53 (02): : 838 - 847
  • [6] A Sim-to-Real Deep Learning-Based Framework for Autonomous Nano-Drone Racing (vol 9, pg 1899, 2024)
    Lamberti, Lorenzo
    Cereda, Elia
    Abbate, Gabriele
    Bellone, Lorenzo
    Morinigo, Victor Javier Kartsch
    Barcis, Michal
    Barcis, Agata
    Giusti, Alessandro
    Conti, Francesco
    Palossi, Daniele
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (10): : 8426 - 8426
  • [7] A Sim-to-Real Object Recognition and Localization Framework for Industrial Robotic Bin Picking
    Li, Xianzhi
    Cao, Rui
    Feng, Yidan
    Chen, Kai
    Yang, Biqi
    Fu, Chi-Wing
    Li, Yichuan
    Dou, Qi
    Liu, Yun-Hui
    Heng, Pheng-Ann
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02) : 3961 - 3968
  • [8] Precise Positioning and Heading for Autonomous Scouting Robots in a Harsh Environment
    Obregon, David
    Arnau, Raul
    Campo-Cossio, Maria
    Arroyo-Parras, Juan G.
    Pattinson, Michael
    Tiwari, Smita
    Lluvia, Iker
    Rey, Oscar
    Verschoore, Jeroen
    Lenza, Libor
    Reyes, Joaquin
    FROM BIOINSPIRED SYSTEMS AND BIOMEDICAL APPLICATIONS TO MACHINE LEARNING, PT II, 2019, 11487 : 82 - 96
  • [9] Real-Time Solar Power Estimation Through RNN-Based Attention Models
    Park, Kyungnam
    Yim, Jaeryun
    Lee, Hyoseop
    Park, Muncheul
    Kim, Hongseok
    IEEE ACCESS, 2024, 12 : 62502 - 62510
  • [10] RNN-Based Demodulation Framework for Spectrum Narrowing in Ultra-Dense WDM Networks
    Shiraki, R.
    Mori, Y.
    Hasegawa, H.
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2022, 34 (18) : 993 - 996