Remote Sensing LiDAR and Hyperspectral Classification with Multi-Scale Graph Encoder-Decoder Network

被引:3
作者
Wang, Fang [1 ]
Du, Xingqian [2 ]
Zhang, Weiguang [1 ]
Nie, Liang [1 ]
Wang, Hu [1 ,3 ,4 ,5 ]
Zhou, Shun [1 ]
Ma, Jun [6 ]
机构
[1] Xian Technol Univ, Sch Optoelect Engn, Xian 710021, Peoples R China
[2] China Acad Space Technol Xian, Xian 710100, Peoples R China
[3] Xian Inst Opt & Precis Mech CAS, Xian 710119, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[5] Xian Space Sensor Opt Technol Engn Res Ctr, Xian 710119, Peoples R China
[6] Xian Technol Univ, Inst Interdisciplinary & Innovat Res, Xian 710021, Peoples R China
关键词
LiDAR; hyperspectral image; multi-modal data fusion; graph model; deep learning;
D O I
10.3390/rs16203912
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The rapid development of sensor technology has made multi-modal remote sensing data valuable for land cover classification due to its diverse and complementary information. Many feature extraction methods for multi-modal data, combining light detection and ranging (LiDAR) and hyperspectral imaging (HSI), have recognized the importance of incorporating multiple spatial scales. However, effectively capturing both long-range global correlations and short-range local features simultaneously on different scales remains a challenge, particularly in large-scale, complex ground scenes. To address this limitation, we propose a multi-scale graph encoder-decoder network (MGEN) for multi-modal data classification. The MGEN adopts a graph model that maintains global sample correlations to fuse multi-scale features, enabling simultaneous extraction of local and global information. The graph encoder maps multi-modal data from different scales to the graph space and completes feature extraction in the graph space. The graph decoder maps the features of multiple scales back to the original data space and completes multi-scale feature fusion and classification. Experimental results on three HSI-LiDAR datasets demonstrate that the proposed MGEN achieves considerable classification accuracies and outperforms state-of-the-art methods.
引用
收藏
页数:22
相关论文
共 50 条
[21]   Extracting Buildings from Remote Sensing Images Using a Multitask Encoder-Decoder Network with Boundary Refinement [J].
Xu, Hao ;
Zhu, Panpan ;
Luo, Xiaobo ;
Xie, Tianshou ;
Zhang, Liqiang .
REMOTE SENSING, 2022, 14 (03)
[22]   SEMANTIC SEGMENTATION OF REMOTE SENSING IMAGERY USING AN ENHANCED ENCODER-DECODER ARCHITECTURE [J].
Aburaed, N. ;
Al-Saad, M. ;
Alkhatib, M. Q. ;
Zitouni, M. S. ;
Almansoori, S. ;
Al-Ahmad, H. .
GEOSPATIAL WEEK 2023, VOL. 10-1, 2023, :1015-1020
[23]   Image deblurring via multi-scale feature fusion and multi-input multi-output encoder-decoder [J].
Zhao Q. ;
Zhou D. ;
Yang H. ;
Wang C. ;
Li M. .
Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2022, 51 (10)
[24]   Deep Multi-scale Convolutional Neural Network for Hyperspectral Image Classification [J].
Zhang Feng-zhe ;
Yang Xia .
NINTH INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2017), 2018, 10615
[25]   An effective global learning framework for hyperspectral image classification based on encoder-decoder architecture [J].
Dang, Lanxue ;
Liu, Chongyang ;
Dong, Weichuan ;
Hou, Yane ;
Ge, Qiang ;
Liu, Yang .
INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2022, 15 (01) :1350-1376
[26]   Underwater Image Enhancement Using Encoder-Decoder Scale Attention Network [J].
Lee, Ka-Ki ;
Hsieh, Jun-Wei ;
Hsieh, Yi-Kuan ;
Hsieh, An-Ting .
2024 6TH INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND THE INTERNET, ICCCI 2024, 2024, :101-106
[27]   Mapping multi-scale vascular plant richness in a forest landscape with integrated LiDAR and hyperspectral remote-sensing [J].
Hakkenberg, C. R. ;
Zhu, K. ;
Peet, R. K. ;
Song, C. .
ECOLOGY, 2018, 99 (02) :474-487
[28]   Ensemble Stacked Auto-encoder Classification on LIDAR Remote Sensing Images [J].
Dawei Li ;
Ruifang Zhang .
Journal of the Indian Society of Remote Sensing, 2018, 46 :597-604
[29]   Ensemble Stacked Auto-encoder Classification on LIDAR Remote Sensing Images [J].
Li, Dawei ;
Zhang, Ruifang .
JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2018, 46 (04) :597-604
[30]   GRAPH REASONED MULTI-SCALE ROAD SEGMENTATION IN REMOTE SENSING IMAGERY [J].
Vekinis, Andrew Alexander .
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, :6890-6893