Weighted common spatial pattern based adaptation regularization for multi-source EEG time series

被引:0
|
作者
Han, Rongqing [1 ]
Li, Zhuoming [1 ]
Zhang, Yu [2 ]
Meng, Xiangge [1 ]
Wang, Zizhu [1 ]
Dong, Heng [1 ,3 ]
机构
[1] Harbin Inst Technol, Sch Elect & Informat Engn, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150001, Peoples R China
[3] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
关键词
Brain-computer interface (BCI); Eletroencephalogram (EEG); Time series; Signal processing; Transfer learning; BRAIN-COMPUTER INTERFACES; SINGLE-TRIAL EEG; CLASSIFICATION; FRAMEWORK;
D O I
10.1016/j.compeleceng.2024.109680
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Brain-computer interfaces (BCIs) have garnered significant attention due to their ability to actualize previously fantastical concepts through enabling direct communication between the brain and peripherals. However, electroencephalogram (EEG) time series are inherently vulnerable and subject-specific, necessitating a calibration process that is both intricate and time-consuming for different subjects. To address this issue, we present a feature fusion based adaptation regularization algorithm named as weighted common spatial pattern feature-based adaptation regularization (WCSPAR) to improve the classification performance for multi-source motor imagery EEG signals. Specifically, to leverage information from source domains, we refine the method for constructing covariance matrices within the common spatial pattern framework by incorporating information from source domains and introducing a classifier to predict pseudo labels in target domain. Furthermore, to fully exploit the inter-domain information, we present a similarity estimation approach utilizing Riemannian distance to quantify different contributions from different source domains. Additionally, we devise an uncertainty-free classifier based on adaptation regularization transfer learning to prevent negative transfer. To evaluate the performance of WCSPAR, we conduct comparative experiments involving eight benchmark algorithms. Experimental results demonstrate the effectiveness of WCSPAR, which achieved the highest average accuracy of 80.75% when compared with other state-of-the-art algorithms.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] CALDA: Improving Multi-Source Time Series Domain Adaptation With Contrastive Adversarial Learning
    Wilson, Garrett
    Doppa, Janardhan Rao
    Cook, Diane J.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (12) : 14208 - 14221
  • [2] Multi-Source Deep Domain Adaptation with Weak Supervision for Time-Series Sensor Data
    Wilson, Garrett
    Doppa, Janardhan Rao
    Cook, Diane J.
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 1768 - 1778
  • [3] Mining relevant partial periodic pattern of multi-source time series data
    Xun, Yaling
    Wang, Linqing
    Yang, Haifeng
    Cai, JiangHui
    INFORMATION SCIENCES, 2022, 615 : 638 - 656
  • [4] Multi-source Domain Adaptation of Weighted Disentangled Semantic Representation
    Cai R.-C.
    Zheng L.-J.
    Li Z.-J.
    Ruan Jian Xue Bao/Journal of Software, 2022, 33 (12): : 4517 - 4533
  • [5] Feature Weighting and Regularization of Common Spatial Patterns in EEG-Based Motor Imagery BCI
    Mishuhina, Vasilisa
    Jiang, Xudong
    IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (06) : 783 - 787
  • [6] A Novel Features Selection Approach with Common Spatial Pattern for EEG Based Brain?Computer Interface Implementation
    Ali, Sujan
    Ferdous, Jannatul
    Hamid, Ekramul
    Molla, Khademul Islam
    IETE JOURNAL OF RESEARCH, 2022, 68 (03) : 1757 - 1771
  • [7] Multi-source fully test-time adaptation
    Du, Yuntao
    Luo, Siqi
    Xin, Yi
    Chen, Mingcai
    Feng, Shuai
    Zhang, Mujie
    Wang, Chonngjun
    NEURAL NETWORKS, 2025, 181
  • [8] Multi-source deep domain adaptation ensemble framework for cross-dataset motor imagery EEG transfer learning
    Miao, Minmin
    Yang, Zhong
    Sheng, Zhenzhen
    Xu, Baoguo
    Zhang, Wenbin
    Cheng, Xinmin
    PHYSIOLOGICAL MEASUREMENT, 2024, 45 (05)
  • [9] Decoding Motor Imagery through Common Spatial Pattern Filters at the EEG Source Space
    Xygonakis, Ioannis
    Athanasiou, Alkinoos
    Pandria, Niki
    Kugiumtzis, Dimitris
    Bamidis, Panagiotis D.
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2018, 2018
  • [10] A new multi-source Transfer Learning method based on Two-stage Weighted Fusion
    Huang, Linqing
    Fan, Jinfu
    Zhao, Wangbo
    You, Yang
    KNOWLEDGE-BASED SYSTEMS, 2023, 262