A self-powered and self-sensing wave energy harvester based on a three-rotor motor of axle disk type for sustainable sea

被引:1
|
作者
Xia, Xiaofeng [1 ]
Fan, Chengliang [3 ]
Zhou, Qiqi [1 ]
Kong, Weihua [1 ]
Liu, Genshuo [5 ]
Zhang, Zutao [2 ]
Pan, Yajia [1 ]
Luo, Dabing [1 ]
Azam, Ali [4 ]
Tang, Minfeng [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Mech Engn, Chengdu 610031, Peoples R China
[2] Chengdu Technol Univ, Chengdu 611730, Peoples R China
[3] Southwest Jiaotong Univ, Sch Informat Sci & Tech, Chengdu 610031, Peoples R China
[4] Southwest Jiaotong Univ, Sch Elect Engn, Chengdu 610031, Peoples R China
[5] Beijing Inst Technol, Dept Mech Engn, Beijing 100081, Peoples R China
关键词
Two-stage accelerating mechanism; Three-stage reversing mechanism; Wave monitoring; Fault self-monitoring; Energy harvesting; CONVERTER; DESIGN;
D O I
10.1016/j.energy.2024.133512
中图分类号
O414.1 [热力学];
学科分类号
摘要
The abundance of wave energy resources on ocean islands renders them an ideal natural platform for ocean monitoring. This is because the energy from the waves can be harnessed to power ocean monitoring sensors. This paper presents a self-powered and self-sensing three-stage rotor electromagnetic generator wave energy harvester (SS-WEH). The novel three-stage rotor generator configuration of the self-supply module demonstrates a superior power output compared to the single-rotor and inertial two-rotor structures used in previous studies. The maximum average power output achieved is 8.24 W within a frequency range of 1 Hz. PTO systems can achieve average power densities of up to 675 W/m3. Furthermore, the wave energy harvester functions as a selfsensing module, transmitting voltage signals to a computer terminal through a Wi-Fi module. This is achieved using a gated recirculation unit (GRU) deep learning model to monitor wave states and detect faults within the harvester system. The self-sensing module achieves an accuracy rate of 99.56 %. The wave energy harvester system proposed in this paper can simultaneously harvest wave energy, monitor ocean waves, and self-monitor system faults, which is crucial for advancing ocean resource development and monitoring.
引用
收藏
页数:19
相关论文
共 47 条
  • [41] A Robust Silicone Rubber Strip-Based Triboelectric Nanogenerator for Vibration Energy Harvesting and Multi-Functional Self-Powered Sensing
    Du, Taili
    Ge, Bin
    Mtui, Anaeli Elibariki
    Zhao, Cong
    Dong, Fangyang
    Zou, Yongjiu
    Wang, Hao
    Sun, Peiting
    Xu, Minyi
    NANOMATERIALS, 2022, 12 (08)
  • [42] Flexible Triboelectric Nanogenerators based on Hydrogel/g-C3N4 Composites for Biomechanical Energy Harvesting and Self-Powered Sensing
    Xiao, Yana
    Li, Zihua
    Xu, Bingang
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (11) : 13674 - 13684
  • [43] A high-efficiency road energy harvester based on a chessboard sliding plate using semi-metal friction materials for self-powered applications in road traffic
    Qi, Lingfei
    Pan, Hongye
    Bano, Shehar
    Zhu, Miankuan
    Liu, Jizong
    Zhang, Zutao
    Liu, Yujie
    Yuan, Yanping
    ENERGY CONVERSION AND MANAGEMENT, 2018, 165 : 748 - 760
  • [44] High-Performance Flexible Triboelectric Nanogenerator Based on Environmentally Friendly, Low-Cost Sodium Carboxymethylcellulose for Energy Harvesting and Self-Powered Sensing
    He, Jinmei
    Xue, Yuyu
    Sun, Wenchao
    Shen, Lei
    Zhao, Yue
    Yan, Jufeng
    Wu, Yaxin
    Zhang, Bin
    Qu, Mengnan
    ACS APPLIED ELECTRONIC MATERIALS, 2023, 5 (01) : 291 - 301
  • [45] A Ti3C2Tx MXene-Based Energy-Harvesting Soft Actuator with Self-Powered Humidity Sensing and Real-Time Motion Tracking Capability
    Li, Peida
    Su, Nan
    Wang, Zhiyu
    Qiu, Jieshan
    ACS NANO, 2021, 15 (10) : 16811 - 16818
  • [46] Analysis and Experiment of Self-Powered, Pulse-Based Energy Harvester Using 400 V FEP-Based Segmented Triboelectric Nanogenerators and 98.2% Tracking Efficient Power Management IC for Multi-Functional IoT Applications
    Chandrarathna, Seneke Chamith
    Graham, Sontyana Adonijah
    Ali, Muhammad
    Ranaweera, Arambewaththe Lekamalage Aruna Kumara
    Karunarathne, Migara Lakshitha
    Yu, Jae Su
    Lee, Jong-Wook
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (17)
  • [47] Triboelectric Nanogenerators Based on Transition Metal Carbo-Chalcogenide (Nb2S2C and Ta2S2C) for Energy Harvesting and Self-Powered Sensing
    Xiao, Yana
    Li, Zihua
    Tan, Di
    Carsten, Gachot
    Xu, Bingang
    ADVANCED SCIENCE, 2024, 11 (43)