Data-Driven Saturated State Feedback Design for Polynomial Systems Using Noisy Data

被引:1
|
作者
Madeira, Diego de S. [1 ]
Correia, Wilkley B. [1 ]
机构
[1] Fed Univ Ceara UFC, Elect Engn Dept, BR-60455760 Fortaleza, Brazil
关键词
Polynomials; State feedback; Nonlinear systems; Noise measurement; Feedback control; Vectors; Linear systems; Data-driven control; noisy data; polynomial systems; saturated state feedback; sum-of-squares (SOS); DISSIPATIVE DYNAMICAL-SYSTEMS; LINEAR-SYSTEMS; OPTIMIZATION; STABILITY;
D O I
10.1109/TAC.2024.3402499
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this note, the problem of data-driven saturated state feedback design for polynomial nonlinear systems is solved by means of a sum-of-squares (SOS) approach. This new strategy combines recent results in the dissipativity theory and data-driven feedback control using noisy input-state data. SOS optimization is employed in this work for controller design and to deliver an estimate of the closed-loop domain of attraction under saturated feedback. Numerical examples allow the reader to verify the usefulness of our strategy, which is the first in literature to provide a data-driven and dissipativity-based approach for solving the problem of input saturation for continuous-time polynomial systems.
引用
收藏
页码:7932 / 7939
页数:8
相关论文
共 50 条
  • [31] Data-Driven Safe Control of Discrete-Time Non-Linear Systems
    Zheng, Jian
    Miller, Jared
    Sznaier, Mario
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 1553 - 1558
  • [32] Linear Tracking MPC for Nonlinear Systems-Part II: The Data-Driven Case
    Berberich, Julian
    Koehler, Johannes
    Mueller, Matthias A.
    Allgoewer, Frank
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (09) : 4406 - 4421
  • [33] A Behavioral Approach to Data-Driven Control With Noisy Input-Output Data
    van Waarde, Henk J.
    Eising, Jaap
    Camlibel, M. Kanat
    Trentelman, Harry L.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (02) : 813 - 827
  • [34] A Novel Data-driven Predictive Control for Networked Control Systems with Random Packet Dropouts
    Zhen, Shuo
    Hou, Zhongsheng
    Yin, Chenkun
    2017 6TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS (DDCLS), 2017, : 335 - 340
  • [35] On Data-Driven Control: Informativity of Noisy Input-Output Data With Cross-Covariance Bounds
    Steentjes, Tom R., V
    Lazar, Mircea
    van den Hof, Paul M. J.
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 2192 - 2197
  • [36] One-Shot Data-Driven Design for Feedback Controller and Reference Model With BIBO Stability
    Yahagi, Shuichi
    Kajiwara, Itsuro
    IEEE ACCESS, 2024, 12 : 147882 - 147893
  • [37] Controller Design for Robust Invariance From Noisy Data
    Bisoffi, Andrea
    De Persis, Claudio
    Tesi, Pietro
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (01) : 636 - 643
  • [38] Model Reference Gaussian Process Regression: Data-Driven State Feedback Controller
    Kim, Hyuntae
    Chang, Hamin
    IEEE ACCESS, 2023, 11 : 134374 - 134381
  • [39] Data-Driven Tracking Control for Uncertain Linear Systems Using a Dual-System Approach
    Qi, Wan-Ling
    Liu, Kun-Zhi
    Wang, Rui
    Xu, Chang-Yi
    IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 3331 - 3336
  • [40] State-Feedback Event-Triggered Control Using Data-Driven Methods
    Matsuda, Yuma
    Kato, Shuichi
    Wakasa, Yuji
    Adachi, Ryosuke
    2022 61ST ANNUAL CONFERENCE OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS (SICE), 2022, : 1287 - 1292