Data-Driven Saturated State Feedback Design for Polynomial Systems Using Noisy Data

被引:1
|
作者
Madeira, Diego de S. [1 ]
Correia, Wilkley B. [1 ]
机构
[1] Fed Univ Ceara UFC, Elect Engn Dept, BR-60455760 Fortaleza, Brazil
关键词
Polynomials; State feedback; Nonlinear systems; Noise measurement; Feedback control; Vectors; Linear systems; Data-driven control; noisy data; polynomial systems; saturated state feedback; sum-of-squares (SOS); DISSIPATIVE DYNAMICAL-SYSTEMS; LINEAR-SYSTEMS; OPTIMIZATION; STABILITY;
D O I
10.1109/TAC.2024.3402499
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this note, the problem of data-driven saturated state feedback design for polynomial nonlinear systems is solved by means of a sum-of-squares (SOS) approach. This new strategy combines recent results in the dissipativity theory and data-driven feedback control using noisy input-state data. SOS optimization is employed in this work for controller design and to deliver an estimate of the closed-loop domain of attraction under saturated feedback. Numerical examples allow the reader to verify the usefulness of our strategy, which is the first in literature to provide a data-driven and dissipativity-based approach for solving the problem of input saturation for continuous-time polynomial systems.
引用
收藏
页码:7932 / 7939
页数:8
相关论文
共 50 条
  • [1] Data-Driven Stabilization of Nonlinear Polynomial Systems With Noisy Data
    Guo, Meichen
    De Persis, Claudio
    Tesi, Pietro
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (08) : 4210 - 4217
  • [2] Data-driven design of safe control for polynomial systems
    Luppi, Alessandro
    Bisoffi, Andrea
    De Persis, Claudio
    Tesi, Pietro
    EUROPEAN JOURNAL OF CONTROL, 2024, 75
  • [3] Robust data-driven state-feedback design
    Berberich, Julian
    Koch, Anne
    Scherer, Carsten W.
    Allgoewer, Frank
    2020 AMERICAN CONTROL CONFERENCE (ACC), 2020, : 1532 - 1538
  • [4] Gaussian inference for data-driven state-feedback design of nonlinear systems
    Martin, Tim
    Schon, Thomas B.
    Allgoewer, Frank
    IFAC PAPERSONLINE, 2023, 56 (02): : 4796 - 4803
  • [5] Data-driven discovery of linear dynamical systems from noisy data
    WANG YaSen
    YUAN Ye
    FANG HuaZhen
    DING Han
    Science China(Technological Sciences), 2024, 67 (01) : 121 - 129
  • [6] Data-driven discovery of linear dynamical systems from noisy data
    YaSen Wang
    Ye Yuan
    HuaZhen Fang
    Han Ding
    Science China Technological Sciences, 2024, 67 : 121 - 129
  • [7] Data-driven discovery of linear dynamical systems from noisy data
    Wang, Yasen
    Yuan, Ye
    Fang, Huazhen
    Ding, Han
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2024, 67 (01) : 121 - 129
  • [8] Feedback linearisation of mechanical systems using data-driven models
    Floren, Merijn
    Classens, Koen
    Oomen, Tom
    Noel, Jean -Philippe
    JOURNAL OF SOUND AND VIBRATION, 2024, 577
  • [9] Data-Driven System Analysis of Nonlinear Systems Using Polynomial Approximation
    Martin, Tim
    Allgoewer, Frank
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (07) : 4261 - 4274
  • [10] A data-driven approach for the design of feedback controllers
    Barbu, Marian
    Ceanga, Emil
    2014 18TH INTERNATIONAL CONFERENCE SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2014, : 609 - 614