An Unsupervised Learning Network for Large-Scale LiDAR Point Clouds Registration

被引:0
|
作者
Liu, Jingbin [1 ,2 ]
Lv, Xuanfan [1 ]
Gong, Xiaodong [1 ]
Liang, Yifan [1 ]
Hyyppa, Juha [2 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan 430079, Peoples R China
[2] Finnish Geospatial Res Inst, Dept Remote Sensing & Photogrammetry, Espoo 02150, Finland
基金
中国国家自然科学基金;
关键词
Point cloud compression; Feature extraction; Laser radar; Three-dimensional displays; Accuracy; Task analysis; Simultaneous localization and mapping; LiDAR point cloud registration; fast and robust registration; unsupervised deep learning; large-scale scene; autonomous driving positioning; global localization;
D O I
10.1109/TVT.2024.3417415
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the continuous development of autonomous driving technologies, the registration of outdoor large-scale LiDAR point clouds has become increasingly important. Unlike indoor small-scale object point clouds, large-scale point clouds have inherent sparsity, abundant outliers, and other limitations. These characteristics often lead to low alignment accuracy and high time consumption when applying existing methods to large-scale point cloud registration. To address these issues, we propose an improved point cloud keypoints extracting method based on rotation compensation and a convolutional end-to-end unsupervised point cloud registration network. The former enables reliable keypoints extraction. The latter further extracts global features from the keypoint point clouds obtained by the former method and learns the overlapping region information between the source and target point clouds using a spatial attention weight encoder, and it can be trained efficiently without pose ground truth. To ensure fast and effective convergence of the network, we introduce a chamfer distance loss based on dynamic overlap rates. We test our method on two outdoor large-scale LIDAR point cloud datasets: PandaSet and KITTI odometry datasets. The results demonstrate excellent and stable performance, when it is applied to either original consecutive frames or the case of simulating large angular variations in real-world scenarios between consecutive frames by randomly transforming the target frame. Moreover, by applying our method's registration results as initial values to the classic ICP, we not only achieve optimal accuracy and robustness but also significantly accelerate the convergence of ICP, enhancing the efficiency of precise registration.
引用
收藏
页码:16187 / 16200
页数:14
相关论文
共 50 条
  • [1] OKR-Net: Overlapping Keypoints Registration Network for Large-Scale LiDAR Point Clouds
    Wang, Zijian
    Xu, Xiaosu
    Yao, Yiqing
    Li, Nuo
    Liu, Yehao
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (02) : 1254 - 1261
  • [2] An Unsupervised Building Footprints Delineation Approach for Large-Scale LiDAR Point Clouds
    Xu, Xin
    30TH ACM SIGSPATIAL INTERNATIONAL CONFERENCE ON ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS, ACM SIGSPATIAL GIS 2022, 2022, : 788 - 791
  • [3] FEAR: Feature Extraction for Aerial Registration in large-scale LiDAR point clouds
    Graehling, Quinn
    Asari, Vijayan
    Varney, Nina
    MULTIMODAL IMAGE EXPLOITATION AND LEARNING 2021, 2021, 11734
  • [4] Visual Analysis of Large-scale LiDAR Point Clouds
    Luo, Wanbo
    Zhang, Hui
    PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIG DATA, 2015, : 2487 - 2492
  • [5] HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration
    Lu, Fan
    Chen, Guang
    Liu, Yinlong
    Zhang, Lijun
    Qu, Sanqing
    Liu, Shu
    Gu, Rongqi
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 15994 - 16003
  • [6] PointMotionNet: Point-Wise Motion Learning for Large-Scale LiDAR Point Clouds Sequences
    Wang, Jun
    Li, Xiaolong
    Sullivan, Alan
    Abbott, Lynn
    Chen, Siheng
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 4418 - 4427
  • [7] Sparse-to-Dense Matching Network for Large-Scale LiDAR Point Cloud Registration
    Lu, Fan
    Chen, Guang
    Liu, Yinlong
    Zhan, Yibing
    Li, Zhijun
    Tao, Dacheng
    Jiang, Changjun
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (09) : 11270 - 11282
  • [8] FlyCore: Fast Low-Frequency Coarse Registration of Large-Scale Outdoor LiDAR Point Clouds
    Li, Zikuan
    Zhang, Kaijun
    Wang, Zhoutao
    Wu, Sibo
    Zhang, Xiao-Ping
    Wei, Mingqiang
    Wang, Jun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [9] A deep learning network for semantic labeling of large-scale urban point clouds
    Yang B.
    Han X.
    Dong Z.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2021, 50 (08): : 1059 - 1067
  • [10] Fine scale image registration in large-scale urban LIDAR point sets
    Guislain, Maximilien
    Digne, Julie
    Chaine, Raphaelle
    Monnier, Gilles
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2017, 157 : 90 - 102