Large language models for generative information extraction: a survey

被引:14
作者
Xu, Derong [1 ,2 ,3 ]
Chen, Wei [1 ,2 ]
Peng, Wenjun [1 ,2 ]
Zhang, Chao [1 ,2 ,3 ]
Xu, Tong [1 ,2 ]
Zhao, Xiangyu [3 ]
Wu, Xian [4 ]
Zheng, Yefeng [4 ]
Wang, Yang [5 ]
Chen, Enhong [1 ,2 ]
机构
[1] State Key Lab Cognit Intelligence, Hefei 230000, Peoples R China
[2] Univ Sci & Technol China, Hefei 230000, Peoples R China
[3] City Univ Hong Kong, Dept Data Sci, Hongkong 999077, Peoples R China
[4] Tencent YouTu Lab, Jarvis Res Ctr, Beijing 100029, Peoples R China
[5] Anhui Conch Informat Technol Engn Co Ltd, Wuhu 241000, Peoples R China
基金
中国国家自然科学基金;
关键词
information extraction; large language models; review; RESOURCE; CORPUS;
D O I
10.1007/s11704-024-40555-y
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Information Extraction (IE) aims to extract structural knowledge from plain natural language texts. Recently, generative Large Language Models (LLMs) have demonstrated remarkable capabilities in text understanding and generation. As a result, numerous works have been proposed to integrate LLMs for IE tasks based on a generative paradigm. To conduct a comprehensive systematic review and exploration of LLM efforts for IE tasks, in this study, we survey the most recent advancements in this field. We first present an extensive overview by categorizing these works in terms of various IE subtasks and techniques, and then we empirically analyze the most advanced methods and discover the emerging trend of IE tasks with LLMs. Based on a thorough review conducted, we identify several insights in technique and promising research directions that deserve further exploration in future studies. We maintain a public repository and consistently update related works and resources on GitHub (LLM4IE repository).
引用
收藏
页数:24
相关论文
共 292 条
  • [1] Agrawal M, 2022, P 2022 C EMP METH NA, P1998, DOI [DOI 10.18653/V1/2022.EMNLP-MAIN.130, 10.18653/v1/2022.emnlp-main.130]
  • [2] Alt C, 2020, 58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), P1558
  • [3] Amalvy A., 2023, 2023 C EMPIRICAL MET, P10372, DOI 10.18653/v1/2023.emnlp-main.642
  • [4] Ashok D, 2023, Arxiv, DOI [arXiv:2305.15444, DOI 10.48550/ARXIV.2305.15444]
  • [5] Atuhurra J, 2024, arXiv
  • [6] Beurer-Kellner L, 2023, Arxiv, DOI arXiv:2311.04954
  • [7] Bhagavatula C., 2020, P 8 INT C LEARN REPR
  • [8] CodeKGC: Code Language Model for Generative Knowledge Graph Construction
    Bi, Zhen
    Chen, Jing
    Jiang, Yinuo
    Xiong, Feiyu
    Guo, Wei
    Chen, Huajun
    Zhang, Ningyu
    [J]. ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING, 2024, 23 (03)
  • [9] Bian JY, 2023, Arxiv, DOI arXiv:2309.12278
  • [10] Biana JY, 2024, Arxiv, DOI arXiv:2404.17835