Effects of a device containing heat pipe sticks on thermal performance of a heat exchanging tube: An experimental study

被引:0
|
作者
Jafari, Mohammad [1 ]
机构
[1] Lorestan Univ, Mech Engn Dept, POB 465, Khorramabad, Iran
关键词
Heat pipe; Energy efficiency; Turbulent forced convection; Heat exchanger; Nanofluid; Thermal performance; NANOFLUID; EFFICIENCY; ENHANCEMENT; WATER;
D O I
10.1016/j.icheatmasstransfer.2024.108124
中图分类号
O414.1 [热力学];
学科分类号
摘要
Applying heat pipes (HP) on heat-exchanging tubes is the main idea of this experimental work. One, two, or three mini copper heat pipes are soldered around a cooper ring to form a new device to passively enhance the performance of a heat-exchanging test tube. The test tube, containing a hot turbulent flow of water-EG solution, is inserted into a cold-water tank. The hot-flow regime is turbulent with Reynolds numbers of 5600 to 10,700. The results for fully developed turbulent flow were compared with existing correlations to validate the experimental setup. The validation showed less than a 10 % difference in both Nusselt number and friction factor. The base fluid in the heat pipes are distilled water and dilute Cu-water nanofluids. The nanofluids with different concentrations (50, 100, 150, and 200 ppm) are applied in HP-sticks. The role of the Cu-nanoparticle's concentration on the performance of the presented device is discussed. The results reveal the notable performance of the device in the target goal. It is reported that the presented device containing HP-sticks filled with water enhances convection rate of the test tube up to 35%. It is also ascertained that applying the Cu-water nanofluid in the HP-sticks lead to about 14 % better thermal performance, compared to water. The outcomes also reveal that dilute Cu-water nanofluids (phi <= 100 ppm) notably improve the device's performance. Conversely, more concentrated nanofluids possibly decrease the device's performance.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Experimental study of nanofluid effects on the thermal performance with response time of heat pipe
    Hajian, Ramin
    Layeghi, Mohammad
    Sani, Kamal Abbaspour
    ENERGY CONVERSION AND MANAGEMENT, 2012, 56 : 63 - 68
  • [2] Experimental study on the effects of inclination situation of the sintered heat pipe on its thermal performance
    Nazarimanesh, M.
    Yousefi, T.
    Ashjaee, M.
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2015, 68 : 625 - 633
  • [3] Experimental investigation of nanofluids on sintered heat pipe thermal performance
    Kang, Shung-Wen
    Wei, Wei-Chiang
    Tsai, Sheng-Hong
    Huang, Chia-Ching
    APPLIED THERMAL ENGINEERING, 2009, 29 (5-6) : 973 - 979
  • [4] Experimental study of the thermal characteristics of a heat pipe
    Mahdavi, Mahboobe
    Tiari, Saeed
    De Schampheleire, Sven
    Qiu, Songgang
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2018, 93 : 292 - 304
  • [5] Experimental investigation of aluminum oxide nanofluid on heat pipe thermal performance
    Moraveji, Mostafa Keshavarz
    Razvarz, Sina
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2012, 39 (09) : 1444 - 1448
  • [6] Experimental investigation of the effect of graphene nanofluids on heat pipe thermal performance
    Sadeghinezhad, Emad
    Mehrali, Mohammad
    Rosen, Marc A.
    Akhiani, Amir Reza
    Latibari, Sara. Tahan
    Mehrali, Mehdi
    Metselaar, Hendrik Simon Cornelis
    APPLIED THERMAL ENGINEERING, 2016, 100 : 775 - 787
  • [7] Experimental Study of the Effects of Ferrofluid on Thermal Performance of a Pulsating Heat Pipe
    Maziar, Mohammadi
    Mohammad, Mohammadi
    Amir, R. Ghahremani
    Shafii, M. B.
    PROCEEDINGS IF THE ASME 9TH INTERNATIONAL CONFERENCE ON NANOCHANNELS, MICROCHANNELS AND MINICHANNELS 2011, VOL 1, 2012, : 435 - +
  • [8] Enhancement of thermal performance of a wickless gravity heat pipe with hybrid nanofluid including graphene and MgO nanoparticles: an experimental study
    Martin, Kerim
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2022, 44 (11)
  • [9] AN EXPERIMENTAL STUDY ON THE THERMAL PERFORMANCE OF THE FLAT HEAT PIPE
    Hao Xiaohong
    Guan, Jiqing
    Zhao, Jingbo
    PROCEEDINGS OF THE ASME 5TH INTERNATIONAL CONFERENCE ON MICRO/NANOSCALE HEAT AND MASS TRANSFER, 2016, VOL 2, 2016,
  • [10] Performance analysis of cylindrical heat pipe using nanofluids - An experimental study
    Venkatachalapathy, S.
    Kumaresan, G.
    Suresh, S.
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2015, 72 : 188 - 197