Application of unmanned aerial vehicle optical remote sensing in crop nitrogen diagnosis: A systematic literature review

被引:2
作者
Li, Daoliang [1 ,2 ,3 ,4 ]
Yang, Shuai [1 ,2 ,3 ,4 ,5 ]
Du, Zhuangzhuang [1 ,2 ,3 ,4 ]
Xu, Xianbao [1 ,2 ,3 ,4 ]
Zhang, Pan [1 ,2 ,3 ,4 ]
Yu, Kang [5 ]
Zhang, Jingcheng [5 ]
Shu, Meiyan [6 ]
机构
[1] China Agr Univ, Natl Innovat Ctr Digital Fishery, Beijing, Peoples R China
[2] China Agr Univ, Key Lab Smart Farming Aquat Anim & Livestock, Minist Agr & Rural Affairs, Beijing 100083, Peoples R China
[3] Beijing Engn & Technol Res Ctr Internet Things Agr, Beijing 100083, Peoples R China
[4] China Agr Univ, Coll Informat & Elect Engn, Beijing 100083, Peoples R China
[5] Tech Univ Munich, Sch Life Sci, Precis Agr Lab, D-85354 Freising Weihenstephan, Germany
[6] Henan Agr Univ, Coll Informat & Management Sci, Zhengzhou 450046, Peoples R China
基金
中国国家自然科学基金;
关键词
Unmanned aerial vehicle; Nitrogen; Remote sensing; Crop nitrogen retrieval methodologies; Multi-sensor information fusion; LEAF CHLOROPHYLL CONTENT; HYPERSPECTRAL VEGETATION INDEXES; UAV-BASED RGB; WINTER-WHEAT; NONDESTRUCTIVE ESTIMATION; PRECISION AGRICULTURE; YIELD PREDICTION; PIGMENT CONTENT; PLANT HEIGHT; AREA INDEX;
D O I
10.1016/j.compag.2024.109565
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Nitrogen (N) is an essential nutrient that profoundly impacts crop growth, yield, and overall quality. Misapplication of N fertilizers can negatively affect crop productivity and lead to adverse environmental outcomes. Given this challenge, unmanned aerial vehicle (UAV) remote sensing has steadily evolved into a cost-effective substitute for conventional destructive field sampling and laboratory analysis when determining crops' N status. This paper presents a comprehensive literature review synthesising current and potential physiological and spectral indicators for assessing crop N status and comparing their respective attributes. Moreover, it scrutinizes the advantages and disadvantages of four distinct categories of crop N retrieval methodologies. This study described the processing flow of UAV images and compared the advantages and disadvantages of different UAV platforms and photogrammetry software. Additionally, the study analyzes the applications and developmental prospects of commonly employed UAV optical sensors and multi-sensor information fusion technologies in monitoring crop N status. Finally, the paper delves into the primary challenges and prospective directions concerning assessing crop N status via UAV optical remote sensing. The purpose of this research review extends beyond offering theoretical and technical backing; it seeks to guide practical implementation strategies to foster the adoption and effective use of UAV optical remote sensing in evaluating crop N status.
引用
收藏
页数:26
相关论文
共 191 条
[1]   Machine learning-based methods in structural reliability analysis: A review [J].
Afshari, Sajad Saraygord ;
Enayatollahi, Fatemeh ;
Xu, Xiangyang ;
Liang, Xihui .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 2022, 219
[2]   Biophysical Variable Retrieval of Silage Maize with Gaussian Process Regression and Hyperparameter Optimization Algorithms [J].
Akbari, Elahe ;
Boloorani, Ali Darvishi ;
Verrelst, Jochem ;
Pignatti, Stefano ;
Samany, Najmeh Neysani ;
Soufizadeh, Saeid ;
Hamzeh, Saeid .
REMOTE SENSING, 2023, 15 (14)
[3]   Optimization of soil background removal to improve the prediction of wheat traits with UAV imagery [J].
Almeida-Naunay, Andres F. ;
Tarquis, Ana M. ;
Lopez-Herrera, Juan ;
Perez-Martin, Enrique ;
Pancorbo, Jose L. ;
Raya-Sereno, Maria D. ;
Quemada, Miguel .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 205
[4]   Effects of soil properties, nitrogen application, plant phenology, and their interactions on plant uptake of cadmium in wheat [J].
Ata-Ul-Karim, Syed Tahir ;
Cang, Long ;
Wang, Yujun ;
Zhou, Dongmei .
JOURNAL OF HAZARDOUS MATERIALS, 2020, 384
[5]   Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley [J].
Bendig, Juliane ;
Yu, Kang ;
Aasen, Helge ;
Bolten, Andreas ;
Bennertz, Simon ;
Broscheit, Janis ;
Gnyp, Martin L. ;
Bareth, Georg .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2015, 39 :79-87
[6]   Retrieval of aboveground crop nitrogen content with a hybrid machine learning method [J].
Berger, Katja ;
Verrelst, Jochem ;
Feret, Jean-Baptiste ;
Hank, Tobias ;
Wocher, Matthias ;
Mauser, Wolfram ;
Camps-Valls, Gustau .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2020, 92
[7]   Crop nitrogen monitoring: Recent progress and principal developments in the context of imaging spectroscopy missions [J].
Berger, Katja ;
Verrelst, Jochem ;
Feret, Jean-Baptiste ;
Wang, Zhihui ;
Wocher, Matthias ;
Strathmann, Markus ;
Danner, Martin ;
Mauser, Wolfram ;
Hank, Tobias .
REMOTE SENSING OF ENVIRONMENT, 2020, 242
[8]   Evaluation of the PROSAIL Model Capabilities for Future Hyperspectral Model Environments: A Review Study [J].
Berger, Katja ;
Atzberger, Clement ;
Danner, Martin ;
D'Urso, Guido ;
Mauser, Wolfram ;
Vuolo, Francesco ;
Hank, Tobias .
REMOTE SENSING, 2018, 10 (01)
[9]   Quantifying chlorophylls and caroteniods at leaf and canopy scales: An evaluation of some hyperspectral approaches [J].
Blackburn, GA .
REMOTE SENSING OF ENVIRONMENT, 1998, 66 (03) :273-285
[10]   Monitoring of grain crops nitrogen status from uav multispectral images coupled with deep learning approaches [J].
Blekanov, I. ;
Molin, A. ;
Zhang, D. ;
Mitrofanov, E. ;
Mitrofanova, O. ;
Li, Yin .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 212