Preliminary denoising by 3D U-Net in image domain for low dose CT images

被引:0
|
作者
Song, Xiaofu [1 ,2 ]
Han, Yu [2 ]
Xi, Xiaoqi [2 ]
Li, Lei [2 ]
Zhu, Linlin [2 ]
Yang, Shuangzhan [2 ]
Liu, Mengnan [2 ]
Tan, Siyu [2 ]
Yan, Bin [2 ]
机构
[1] Zhengzhou University, School of Software, Zhengzhou,45000, China
[2] Information Engineering University, College of Information System Engineering, Zhengzhou,45000, China
关键词
Compendex;
D O I
暂无
中图分类号
学科分类号
摘要
Computerized tomography
引用
收藏
页码:367 / 370
相关论文
共 50 条
  • [41] A Multidimensional Framework Incorporating 2D U-Net and 3D Attention U-Net for the Segmentation of Organs from 3D Fluorodeoxyglucose-Positron Emission Tomography Images
    Vezakis, Andreas
    Vezakis, Ioannis
    Vagenas, Theodoros P.
    Kakkos, Ioannis
    Matsopoulos, George K.
    ELECTRONICS, 2024, 13 (17)
  • [42] Automated segmentation of computed tomography colonography images using a 3D U-Net
    Barr, Keiran
    Laframboise, Jacob
    Ungi, Tamas
    Hookey, Lawrence
    Fichtinger, Gabor
    MEDICAL IMAGING 2020: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, 2021, 11315
  • [43] A Residual Dense U-Net Neural Network for Image Denoising
    Gurrola-Ramos, Javier
    Dalmau, Oscar
    Alarcon, Teresa E.
    IEEE ACCESS, 2021, 9 : 31742 - 31754
  • [44] DDUNet: Dense Dense U-Net with Applications in Image Denoising
    Jia, Fan
    Wong, Wing Hong
    Zeng, Tieyong
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 354 - 364
  • [45] 3D U-Net for Brain Tumour Segmentation
    Mehta, Raghav
    Arbel, Tal
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT II, 2019, 11384 : 254 - 266
  • [46] ThoraxNet: a 3D U-Net based two-stage framework for OAR segmentation on thoracic CT images
    Francis, Seenia
    Jayaraj, P. B.
    Pournami, P. N.
    Thomas, Manu
    Jose, Ajay Thoomkuzhy
    Binu, Allen John
    Puzhakkal, Niyas
    PHYSICAL AND ENGINEERING SCIENCES IN MEDICINE, 2022, 45 (01) : 189 - 203
  • [47] FMUnet: Frequency Feature Enhancement Multi-level U-Net for Low-Dose CT Denoising with a Real Collected LDCT Image Dataset
    Zhang, Yu
    Yang, Xinqi
    Gong, Guoliang
    Meng, Xianghong
    Wang, Xiaoliang
    Zhang, Zhongwei
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT VII, ICIC 2024, 2024, 14868 : 172 - 183
  • [48] Single Low-Dose CT Image Denoising Using a Generative Adversarial Network With Modified U-Net Generator and Multi-Level Discriminator
    Chi, Jianning
    Wu, Chengdong
    Yu, Xiaosheng
    Ji, Peng
    Chu, Hao
    IEEE ACCESS, 2020, 8 : 133470 - 133487
  • [49] A Novel Attention-Guided Enhanced U-Net With Hybrid Edge-Preserving Structural Loss for Low-Dose CT Image Denoising
    Zubair, Muhammad
    Md Rais, Helmi
    Alazemi, Talal
    IEEE ACCESS, 2025, 13 : 6909 - 6923
  • [50] ThoraxNet: a 3D U-Net based two-stage framework for OAR segmentation on thoracic CT images
    Seenia Francis
    P. B. Jayaraj
    P. N. Pournami
    Manu Thomas
    Ajay Thoomkuzhy Jose
    Allen John Binu
    Niyas Puzhakkal
    Physical and Engineering Sciences in Medicine, 2022, 45 : 189 - 203