Study on optimization of mixing ratio and shrinkage property of alkali-activated ultrafine fly ash-slag mortar

被引:0
|
作者
Wang, Jun [1 ]
Wang, Haofan [1 ]
Li, Zhaoxi [1 ]
Yan, Jun [1 ]
机构
[1] Northeast Forestry Univ, Sch Civil Engn & Transportat, Harbin 150040, Peoples R China
来源
关键词
Response surface method; Basalt fiber; Alkali-activated mortar; Drying shrinkage; Environmental benefits; BLAST-FURNACE SLAG; MECHANICAL-PROPERTIES; COMPRESSIVE STRENGTH; PORTLAND-CEMENT; GEOPOLYMER; BINDERS; BASALT; TEMPERATURE; PERFORMANCE; EMISSIONS;
D O I
10.1016/j.mtcomm.2024.110808
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Alkali-activated cementitious materials have received widespread attention due to their favorable mechanical properties and environmental benefits. However, there are fewer studies on the optimal mixing ratio of alkaliactivated ultrafine fly ash-slag (AAUS) mortar, and shrinkage cracking is a critical issue that hinders its further application. Based on this, the study used the response surface method (RSM) to optimize the mixing ratio of AAUS mortar, explored the effect of basalt fibers (BF) on the compressive strength and drying shrinkage of AAUS mortar, and finally analyzed the energy consumption and carbon emission of fiber-reinforced AAUS mortar. The experiment used X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques for microstructural characterization to research the microstructure and mineral phase changes of AAUS mortar. The results demonstrated that the 28d compressive strength of AAUS mortar reached its maximum when the substitution ratio of ultrafine fly ash (UFA) was 14.5 %, the alkali equivalent was 10.34 %, and the modulus of the activator was 1.6, based on the RSM; BF of appropriate length and volume fraction can productively improve the compressive strength of AAUS mortar and limit drying shrinkage; AAUS mortar with optimal mixing ratio can be sufficiently activated by alkali activator to construct a considerable number of C-(A)-S-H gels to establish a highdensity microstructure; the carbon emission of the B124 test group was reduced by 61.1 % compared with ordinary Portland cement (OPC) mortar.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Mechanisms of autogenous shrinkage of alkali-activated fly ash-slag pastes cured at ambient temperature within 24 h
    Fang, Guohao
    Bahrami, Hossein
    Zhang, Mingzhong
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 171 : 377 - 387
  • [22] Effects of curing environment on strength and microstructure of alkali-activated fly ash-slag binder
    Samantasinghar, Subhashree
    Singh, Suresh
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 235
  • [23] The strength of alkali-activated slag/fly ash mortar blends at ambient temperature
    Wardhono, Arie
    Law, David W.
    Strano, Anthony
    CIVIL ENGINEERING INNOVATION FOR A SUSTAINABLE, 2015, 125 : 650 - 656
  • [24] BONDING BEHAVOR OF REINFORCEMENT IN ALKALI-ACTIVATED SLAG-FLY ASH MORTAR
    Wu, Tsung-Han
    Chang, Ta-Peng
    Shih, Jeng-Ywan
    Yang, Tzong-Ruey
    Hoang-Anh Nguyen
    1ST INTERNATIONAL CONFERENCE ON UHPC MATERIALS AND STRUCTURES, 2016, 105 : 169 - 173
  • [25] Mechanical property and structure of alkali-activated fly ash and slag blends
    Yang, Tao
    Yao, Xiao
    Zhang, Zuhua
    Wang, Hao
    JOURNAL OF SUSTAINABLE CEMENT-BASED MATERIALS, 2012, 1 (04) : 167 - 178
  • [26] Internal curing of alkali-activated fly ash-slag pastes using superabsorbent polymer
    Tu, Wenlin
    Zhu, Yu
    Fang, Guohao
    Wang, Xingang
    Zhang, Mingzhong
    CEMENT AND CONCRETE RESEARCH, 2019, 116 : 179 - 190
  • [27] Fresh mechanical and durability properties of alkali-activated fly ash-slag concrete: a review
    Abhishek, H. S.
    Prashant, Shreelaxmi
    Kamath, Muralidhar, V
    Kumar, Mithesh
    INNOVATIVE INFRASTRUCTURE SOLUTIONS, 2022, 7 (01)
  • [28] Physical, hydrolytic, and mechanical stability of alkali-activated fly ash-slag foam concrete
    Raj, Shubham
    Ramamurthy, K.
    CEMENT & CONCRETE COMPOSITES, 2023, 142
  • [29] Properties of a Lightweight Fly Ash-Slag Alkali-Activated Concrete with Three Strength Grades
    Wang, Huailiang
    Wu, Yuhui
    Wang, Lang
    Chen, Huihua
    Cheng, Baoquan
    APPLIED SCIENCES-BASEL, 2021, 11 (02): : 1 - 21
  • [30] Fresh mechanical and durability properties of alkali-activated fly ash-slag concrete: a review
    H. S. Abhishek
    Shreelaxmi Prashant
    Muralidhar V. Kamath
    Mithesh Kumar
    Innovative Infrastructure Solutions, 2022, 7