Study on optimization of mixing ratio and shrinkage property of alkali-activated ultrafine fly ash-slag mortar

被引:0
|
作者
Wang, Jun [1 ]
Wang, Haofan [1 ]
Li, Zhaoxi [1 ]
Yan, Jun [1 ]
机构
[1] Northeast Forestry Univ, Sch Civil Engn & Transportat, Harbin 150040, Peoples R China
来源
关键词
Response surface method; Basalt fiber; Alkali-activated mortar; Drying shrinkage; Environmental benefits; BLAST-FURNACE SLAG; MECHANICAL-PROPERTIES; COMPRESSIVE STRENGTH; PORTLAND-CEMENT; GEOPOLYMER; BINDERS; BASALT; TEMPERATURE; PERFORMANCE; EMISSIONS;
D O I
10.1016/j.mtcomm.2024.110808
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Alkali-activated cementitious materials have received widespread attention due to their favorable mechanical properties and environmental benefits. However, there are fewer studies on the optimal mixing ratio of alkaliactivated ultrafine fly ash-slag (AAUS) mortar, and shrinkage cracking is a critical issue that hinders its further application. Based on this, the study used the response surface method (RSM) to optimize the mixing ratio of AAUS mortar, explored the effect of basalt fibers (BF) on the compressive strength and drying shrinkage of AAUS mortar, and finally analyzed the energy consumption and carbon emission of fiber-reinforced AAUS mortar. The experiment used X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques for microstructural characterization to research the microstructure and mineral phase changes of AAUS mortar. The results demonstrated that the 28d compressive strength of AAUS mortar reached its maximum when the substitution ratio of ultrafine fly ash (UFA) was 14.5 %, the alkali equivalent was 10.34 %, and the modulus of the activator was 1.6, based on the RSM; BF of appropriate length and volume fraction can productively improve the compressive strength of AAUS mortar and limit drying shrinkage; AAUS mortar with optimal mixing ratio can be sufficiently activated by alkali activator to construct a considerable number of C-(A)-S-H gels to establish a highdensity microstructure; the carbon emission of the B124 test group was reduced by 61.1 % compared with ordinary Portland cement (OPC) mortar.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Shrinkage and strength development of alkali-activated fly ash-slag binary cements
    Hojati, Maryam
    Radlinska, Aleksandra
    CONSTRUCTION AND BUILDING MATERIALS, 2017, 150 : 808 - 816
  • [2] Study on the characteristics of alkali-activated fly ash-slag improved by cenosphere: Hydration and drying shrinkage
    Ma, Hongqiang
    Fu, Congcong
    Huang, Kang
    Dai, Enyang
    Zhang, Shaochen
    Fang, Youliang
    Feng, Jingjing
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 372
  • [3] Shrinkage mitigation of alkali-activated fly ash/slag mortar by using phosphogypsum waste
    Zheng, Yong
    Xuan, Dongxing
    Shen, Bo
    Ma, Kejian
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 375
  • [4] Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages
    Lee, N. K.
    Jang, J. G.
    Lee, H. K.
    CEMENT & CONCRETE COMPOSITES, 2014, 53 : 239 - 248
  • [5] Compressive strength development and shrinkage of alkali-activated fly ash-slag blends associated with efflorescence
    Yao, Xiao
    Yang, Tao
    Zhang, Zuhua
    MATERIALS AND STRUCTURES, 2016, 49 (07) : 2907 - 2918
  • [6] Curing Conditions of Alkali-Activated Fly Ash and Slag Mortar
    Dong, Minhao
    Elchalakani, Mohamed
    Karrech, Ali
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2020, 32 (06)
  • [7] Multiscale micromechanical analysis of alkali-activated fly ash-slag paste
    Fang, Guohao
    Zhang, Mingzhong
    CEMENT AND CONCRETE RESEARCH, 2020, 135
  • [8] Influence of red mud calcined at different temperatures on shrinkage deformation of one-part alkali-activated fly ash-slag mortar
    Xie, Qingqing
    Huang, Xiantao
    Shen, Bo
    Sun, Keke
    Ma, Kejian
    Yang, Jie
    CONSTRUCTION AND BUILDING MATERIALS, 2025, 465
  • [9] Study on Shrinkage in Alkali-Activated Slag-Fly Ash Cementitious Materials
    Cui, Peng
    Wan, Yuanyuan
    Shao, Xuejun
    Ling, Xinyu
    Zhao, Long
    Gong, Yongfan
    Zhu, Chenhui
    MATERIALS, 2023, 16 (11)
  • [10] Behaviour of alkali-activated fly ash-slag paste at elevated temperatures: An experimental study
    Tu, Wenlin
    Fang, Guohao
    Dong, Biqin
    Hu, Yukun
    Zhang, Mingzhong
    CEMENT & CONCRETE COMPOSITES, 2024, 147