Self-adaptive digital twin of fuel cell for remaining useful lifetime prediction

被引:1
|
作者
Zhang, Ming [1 ]
Amiri, Amirpiran [1 ]
Xu, Yuchun [1 ]
Bastin, Lucy [1 ]
Clark, Tony [1 ]
机构
[1] Aston Univ, Coll Engn & Phys Sci, Birmingham B4 7ET, England
基金
“创新英国”项目; 英国工程与自然科学研究理事会;
关键词
Digital twins; Degradation prediction; Useful lifetime; Fuel cells; Transfer learning; ELECTRIC VEHICLES; PROGNOSTICS; MODEL; NETWORKS; STATE;
D O I
10.1016/j.ijhydene.2024.09.266
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Accurate prediction of the remaining useful life (RUL) of proton exchange membrane fuel cells (PEMFCs) is essential for maximizing their operational lifespan. However, existing methods often face limitations in two key areas: long-term prediction (beyond 168 h, or one week) and adaptability to varying operating conditions. To address these challenges, we propose a novel self-adaptive digital twin (SADT) model for RUL prediction of PEMFCs. Our approach uniquely integrates a deep convolutional neural network to generate robust health indicators (HIs) that maintain consistent monotonicity across diverse operating conditions. Additionally, we introduce a novel quantile Huber loss (QH-loss) function to enhance prediction accuracy and incorporate a transfer learning technique to improve adaptability under varying operational scenarios. Experimental results on PEMFC degradation datasets demonstrate that our method outperforms state-of-the-art techniques in long-term prediction accuracy, highlighting its potential to significantly extend fuel cell lifetimes.
引用
收藏
页码:634 / 647
页数:14
相关论文
共 50 条
  • [41] Remaining-Useful-Lifetime Prediction of Proton Exchange Membrane Fuel Cell Considering Model Uncertainty Quantification on the Full-Time Scale
    Yu, Xiaoran
    Yang, Yang
    Xie, Changjun
    Li, Yang
    Zhao, Bo
    Zhang, Leiqi
    Song, Jie
    Deng, Zhanfeng
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2024, 10 (03): : 7443 - 7455
  • [42] Prediction of fault evolution and remaining useful life for rolling bearings with spalling fatigue using digital twin technology
    Weiying Meng
    Yutong Wang
    Xiaochen Zhang
    Sihui Li
    Xu Bai
    Lingling Hou
    Applied Intelligence, 2023, 53 : 28611 - 28626
  • [43] Prediction of fault evolution and remaining useful life for rolling bearings with spalling fatigue using digital twin technology
    Meng, Weiying
    Wang, Yutong
    Zhang, Xiaochen
    Li, Sihui
    Bai, Xu
    Hou, Lingling
    APPLIED INTELLIGENCE, 2023, 53 (23) : 28611 - 28626
  • [44] Fuel Cells Remaining Useful Lifetime forecasting using Echo State Network
    Morando, S.
    Jemei, S.
    Gouriveau, R.
    Zerhouni, N.
    Hissel, D.
    2014 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2014,
  • [45] Adaptive and robust prediction for the remaining useful life of electrolytic capacitors
    Qin, Qi
    Zhao, Shuai
    Chen, Shaowei
    Huang, Dengshan
    Liang, Jian
    MICROELECTRONICS RELIABILITY, 2018, 87 : 64 - 74
  • [46] A remaining useful life prediction framework with adaptive dynamic feedback
    Wang, Zhijian
    Xu, Zhuotao
    Li, Yanfeng
    Ren, Weibo
    Dong, Lei
    Chen, Zhongxin
    Du, Wenhua
    Wang, Junyuan
    Shi, Hui
    Zhang, Xiaohong
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 218
  • [47] Prediction of the Remaining Useful Life of the Proton Exchange Membrane Fuel Cell with an Integrated Health Index
    Fan, Lei
    Zhou, S.
    Wen, Chaokai
    Gao, Jianhua
    SAE International Journal of Advances and Current Practices in Mobility, 2023, 6 (04): : 2349 - 2358
  • [48] A Hybrid Method for Remaining Useful Life Prediction of Proton Exchange Membrane Fuel Cell Stack
    Wang, Fu-Kwun
    Amogne, Zemenu Endalamaw
    Chou, Jia-Hong
    IEEE ACCESS, 2021, 9 : 40486 - 40495
  • [49] An Adaptive Levy Process Model for Remaining Useful Life Prediction
    Wen Bincheng
    Xiao Mingqing
    Tang Xilang
    Li Jianfeng
    Zhu Haizhen
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 10
  • [50] Introduction to an Adaptive Remaining Useful Life Prediction for forming tools
    Kellermann, Christoph
    Adhisantoso, Yeremia Gunawan
    Neumann, Eric
    Munderloh, Marco
    Ostermann, Jorn
    2021 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2021, : 1297 - 1302